Curriculum and Syllabus

Bachelor of Technology

(Computer Science and Engineering)

(As per National Education Policy-2020)

Department of Computer Science and Engineering School of Engineering and Technology, H. N. B. Garhwal University, Srinagar Garhwal, Uttarakhand- 246174

ADMISSION PROCEDURE AND ELIGIBILITY

The minimum qualification for admission to the B. Tech. First year shall be higher secondary school certificate examination (10+2) scheme with Physics, Chemistry and Mathematics or any other subject notified by the UGC/AICTE conducted by Central Board of Secondary Education (CBSE) or any other equivalent examination from recognized board or university. The candidate shall be eligible for admission to B. Tech. Degree Course based on CUET score. In general, the admission to B. Tech. degree course shall be governed by the rules of, Ministry of Education (MOE), Government of India (GOI) and Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand.

	-	
B. Tech (Computer Science and Engineering)	Physics, Mathematics and Chemistry/Computer Science/Electronics/Infor mation Technology/ Biology/Informatics Practices/ Biotechnology	Direct Entry- For B. Tech. I semester: Candidate shall have passed 10+2 examination from any recognized Board/University with Physics and Mathematics as a compulsory subject along with Chemistry/Computer Science/Electronics/Information Technology/ Biology/Informatics Practices/ Biotechnology obtained at least 45% marks (40% in case of candidate belonging to reserved category) in the above subjects taken together. Candidates seeking admission to B.Tech. Course (All branches) in HNB Garhwal University have to appear for CUET (UG). They are required to opt for Physics, Mathematics and Chemistry/Computer Science/Electronics /Information Technology/ Biology/Informatics Practices/ Biotechnology for the admission in HNBGU. Candidates who will not appear in Physics, Mathematics and Chemistry/Computer Science/Electronics/Practices/Biotechnology will not be considered for admission in B.Tech. [Criterion for preparation of Merit list: CUET (UG) merit list: After the CUET (UG) merit list is exhausted; the vacant seats may be filled up by the candidates from the merit list of the university level counselling on the basis of JEE Main's Score

Admission to **B. Tech. 2nd year**, will be made in two modes:

- (i) Students who have passed a three-year Diploma in Engineering recognised by the AICTE/State University or B.Sc. in the relevant/respective discipline will be eligible for admission as per admission procedure adopted by the university time to time.
- (ii) Students who have obtained an equivalent Vocational/Technical Program/Under Graduate Certificate with NHEQF Level 5/ UCF-Level 4.5 will be eligible for admission to 3rd Semester in B. Tech. in the respective discipline of engineering degree program against the vacant seats. However, the candidate shall be eligible for admission on the basis of the entrance examination conducted or any other procedure adopted by Hemvati Nandan Bahuguna Garhwal University for admission to B. Tech. Degree course time to time.

Admission to B. Tech. 3rd year shall be held if the candidate passed B. Tech. 2nd year along with NHEQF Level 6 /UCF-Level 5 equivalent to Undergraduate Diploma in the respective discipline. The admission to B. Tech.

(Fifth Semester) degree program will be held against the vacant seats. However, the candidate shall be eligible for admission on the basis of the entrance examination conducted or any other procedure adopted by Hemvati Nandan Bahuguna Garhwal University for admission to B. Tech. Degree course time to time.

Admission to B. Tech. Fourth year shall be held if the candidate passed B. Tech. 3rd year along with Advanced Diploma/ Bachelor degree in Vocational Education in relevant discipline with NHEQF Level 7/UCF-Level 5.5. The admission to B. Tech. (Seventh Semester) degree program will be held against the vacant seats. However, the candidate shall be eligible for admission on the basis of the entrance examination conducted or any other procedure adopted by Hemvati Nandan Bahuguna Garhwal University for admission to B. Tech. Degree course time to time. With regard to the qualification earned from foreign country, an equivalence certificate from the university /Association of Indian Universities is mandatory for admission to B. Tech. Programs. In case of any dispute about the equivalence in qualification earned from foreign countries, the decision of university in this regards shall be final and binding on all concerned.

The reservation in admission, cancellation of admission and fee refund will be as per AICTE / MOE /GOI/ UGC/ HNBGU norms and notification issued in this regard from time to time.

Eligibility for Under Graduate Certificate

(a) The Under Graduate Certificate course will be offered by all departments of SOET HNB Garhwal University.
(b) All the candidates who have successfully passed one-year (two semester) of B. Tech. Programme will be eligible for Under Graduate Certificate. The candidate who wants to exit with Under Graduate Certificate he/she have to do skill-based training of two months. This skill based training will be of 4 credit based on the job/course specific internship/apprentice-ship equivalent to NHEQF level 5 / UCF- level 4.5. The evaluation of the 04 credit will be based on examination/ presentation before the external expert.

(c) A student shall report the concerned Head on or before the date notified by the Department /School, if he/she is interested to exit with Under Graduate Certificate.

Eligibility for Under Graduate Diploma

(a) The Under Graduate Diploma will be offered by all departments of SOET HNB Garhwal University.

- (b) All the candidates who have successfully passed two-year (Four semester) of B. Tech. Programme will be eligible for Under Graduate Diploma. The candidate who wants to exit with Under Graduate Diploma shall have to do training of skill-based courses of two months. This skill based training will be of 4 credit based on the job/course specific internship/apprentice-ship equivalent to **NHEQF level 6 / UCF- level 5.** The evaluation of the 04 credit will be based on examination/ presentation before the external expert.
- (c) A student shall report the concerned Head on or before the date notified by the Department/School, if he/she is interested to exit with Under Graduate Diploma.

Solution Eligibility for Advance Diploma/ Bachelor of Vocational Education

- (a) The Advance Diploma/ Bachelor of Vocational Education will be offered by all departments of SOET HNB Garhwal University.
- (b) All the candidates who have successfully passed Three-year (Six semester) of B. Tech. Programme will be eligible

Advance Diploma/ Bachelor of Vocational Education. The candidate who wants to exit with Advance Diploma/ Bachelor of Vocational Education shall have to do training of skill-based courses of two months. This skill based training will be of 4 credit based on the job/course specific internship/apprentice-ship equivalent to **NHEQF level 7/ UCF level 5.5**. The evaluation of the 04 credit will be based on examination/ presentation before the external expert.

(c) A student shall report the concerned Head on or before the date notified by the Department/School/University if he/she is interested to exit with Advance Diploma/ Bachelor of Vocational Education.

* Eligibility for B. Tech. Degree

After the Successful completion of the four year B.tech course, a student will be eligible to get B. Tech. Degree in the concerned branch.

Note: The definition of NHEQF levels / UCF levels can be obtained from web-link

https://www.ugc.gov.in/pdfnews/2142241_NHEQF-Draft.pdf

Curriculum

General Instructions

Mandatory Induction Program

	3 weeks duration						
*	Physical activity						
*	Creative Arts						
*	Universal Human Values						
*	Literary						
*	Proficiency Modules						
*	Lectures by Eminent People						
*	Visits to local Areas						
*	Familiarization to Dept./Branch & Innovations						

Induction program for students is to be offered right at the start of the first year. Appendix –I sheet has attached for details.

1. Code for Courses:

Code for a course consists of two alphabets followed by three digits and an optional alphabet.

- First three alphabets represent the school name (SET: School of Engineering and Technology).
- Next two alphabets in the code represent the subject area of the course, e.g., SH: Applied Science and Humanities, EC: Electronics and Communication Engineering, IE: Instrumentation Engineering, EE: Electrical Engineering, ME: Mechanical Engineering, CS: Computer Science and Engineering, IT: Information Technology.
- Next two alphabets in the code represent the name of program, e.g., BT: B. Tech., MT: M. Tech.
- Then there will be subject code with 4 letters out of which first will tell the nature of subject (C: Core/ E: Elective/ S: Skill/ M: Mandatory/ L: Life Skills and Personality Development) and next three letters will tell the number according to the semester (for example 801 will tell its 8th semester subject). First digit represents the semester. Next two digits represent the sequence number of course in the list of courses of a semester.
- The code of the common syllabus for UG courses of the university will be elaborated as VAC: Value Added Course, AMDSC: Additional Multi-Disciplinary Skill Course.

2. Elective Courses:

Elective courses are provided in V, VI, VII and VIII semesters to provide student with flexibility to choose courses of their interest from a list of offered electives. These Electives are the courses offered by the same department or other departments for the students.

3. MOOC Courses: "MOOCs" means Massive Open Online Courses (MOOCs) are such online courses which are developed and made available on the SWAYAM platform of Government of India. MOOCs guidelines on online learning issued by the MHRD vide orders dated 11th March 2016 and subsequent addendums issued by the MHRD.

Any student can be permitted to opt for only up to 20% of the total courses being offered in a particular program in a semester through the online learning courses provided through SWAYAM platform. Any student can opt, with the permission of the department, the course of the SWAYAM platform, which is available/ offered in the same term (even or odd).

- 4. For the slow learners, a remedial class of 1 hr., on each working day will be conducted.
- **5.** Entry/Exit options after 1st year, 2nd year, and 3rd year, respectively may be allowed as per the admission procedure and eligibility of the School of Engineering and Technology (SOET).

All the courses and course titles are subject to change at any stage as per directions of Authorities of the University.

Mandatory Induction Program

B.Tech (Computer Science and Engineering)

	3 weeks duration				
*	Physical activity				
*	Creative Arts				
*	Universal Human Values				
*	Literary				
*	Proficiency Modules				
*	Lectures by Eminent People				
*	Visits to local Areas				
*	Familiarization to Dept./Branch & Innovations				

*Induction program for students to be offered right at the start of the first year.

Induction Program:

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

✤ Physical Activity:

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop team work. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labour yields fruits from nature.

***** Creative Arts:

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it every day for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, flow into engineering design later.

***** Universal Human Values:

It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting staff in the hostel and department, be sensitive to others, etc.

Need for character building has been underlined earlier. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values. Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It is to open thinking towards the self. Universal Human Values discussions could even continue for rest of the semester as a normal course, and not stop with the induction program. Besides drawing the attention of the student to larger issues of life, it would build relationships between teachers and students which last for their entire 4-year stay and possibly beyond.

***** Literary:

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

Proficiency Modules:

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially. We hope that problems arising due to lack of English skills, wherein students start lagging behind or failing in several subjects, for no fault of theirs, would, hopefully, become a thing of the past.

***** Lectures by Eminent People:

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

Visits to Local Area:

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

Solution Familiarization to Dept. /Branch & Innovations:

The students should be told about different method of study compared to coaching that is needed at IITs. They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

PROGRAM OUTCOMES (POS) - ENGINEERING & TECHNOLOGY

Engineering Graduates will be able to:

PO1.	Engineering knowledge:	Apply the knowledge of mathematics, science, engineering fundamentals, and an
		engineering specialization to the solution of complex engineering problems.
PO2.	Problem analysis:	Identify, formulate, review research literature, and analyze complex engineering
		problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3.	Design/development of solutions:	Design solutions for complex engineering problems and design system components or
		processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4.	Conduct investigations of complex problems:	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5.	Modern tool usage:	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6.	The engineer and society:	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7.	Environment and sustainability:	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8.	Ethics:	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9.	Individual and team work:	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication:	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	. Project management and finance	Demonstrate knowledge and understanding of the engineering and management
		principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	. Life-long learning:	Recognize the need for, and have the preparation and ability to engage in independent
		and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES- B.Tech. (CSE)

At the end of the program

PSO1:	Graduates will have adequate knowledge of computer engineering domain to become employable in
	Industry.
PSO2:	Graduate will have strong fundamentals and problem solving skills to analyze, design and develop
	economically feasible solutions for technical and social problems.
PSO3:	Graduate will be aware of recent research trends, higher education and entrepreneurial opportunities, and
	will work ethically towards society.
PSO4:	Graduate will be aware about the latest technology in software and hard ware.
PSO5:	Graduate will be exposed to industrial training giving hands on experience.

Semester- wise List of Subjects (As per NEP 2020)

S. No.	Category	Course Code	Course Code and Title	L	Т	Р	Contact Hrs./Week	Credits
1	Basic	SET/SH/BT/C101	Mathematics I	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C103	Chemistry	3	1	-	4	4
3	Core Basic	SET/ME/BT/C104	Engineering Mechanics	3	1	-	4	4
4	Engineering Subjects		Basic Mechanical Engineering	3	1	-	4	4
5		SET/CS/BT/C105	C Programming	3	1		4	4
6	Core/Basic	SET/SH/BT/C108	Chemistry Lab	-		1	3	1
7	Engineering Subjects Labs	SET/CS/BT/C109	C Programming Lab			1	3	1
8	Extracurricular Courses/CC		Understanding and Connecting Student with Environment*	2	-	-	2	2
9	Skill Course		Internet Technology Lab-I (Skill Enhancement Course)	-	-	1	4	2
		Total		17	5	3	32	26

Semester I

*L= Lectures, T=Tutorials , P= Practicals

* Common syllabus for all UG Courses of the University.

		Seme						
S. No.	Category	Course Code	Course Code and Title	L	Т	Р	Contact Hrs./Week	Credits
1	Basic	SET/SH/BT/C201	Mathematics II	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C202	Physics	3	1	-	4	4
3	Core Basic	SET/EE/BT/C203	Basic Electrical Engineering	3	1	-	4	4
4	Engineering	SET/EC/BT/C204	Basic Electronics	3	1	-	4	4
5	Subjects	SET/IT/BT/C205	Fundamental of Information Technology	3	1		4	4
6	Core/Basic	SET/SH/BT/C207	Physics Lab	-		1	3	1
7	Subjects Based Labs	SET/ME/BT/C208	Engineering Graphics and Workshop Practice			1	3	1
8	Life Skills and personality development		A Life Skills and personality Development*	2	-	I	2	2
9	Skill Course	SET/CS/SC/C210	Basics of Python Lab	_	_	1	4	2
		Total		17	5	3	32	26

Semester II

*L= Lectures, T=Tutorials , P= Practicals

* Common syllabus for all UG Courses of the University.

Entry/Exit Option with Under Graduate Certificate in Computer Science and Engineering, may be allowed after completion of the 1st year, and as per requirements defined in the admission procedure and eligibility of the School..

S. No.	Category	Course Code	Course Code and Title	L	Т	Р	Contact Hrs./Week	Credits
1	Basic Science/Multidisciplinary	SET/AH/BT/C301	Mathematics III	3	1	-	4	4
2		SET/CS/BT/C302	Computer Based Numerical & Statistical Techniques	3	1	-	4	4
3	Core Subjects	SET/CS/BT/C304	Data Structures Using C	3	1	-	4	4
4		SET/CS/BT/C305	Discrete Structures	3	1	-	4	4
5	Interdisciplinary Subject	SET/EC/BT/C303	Digital Electronics	3	1		4	4
6	Core Subjects Based Labs	SET/CS/BT/C306	Computer Based Numerical & Statistical Techniques lab	-		1	3	1
7	Labs	SET/CS/BT/C307	Digital Electronics Lab			1	3	1
8	Extracurricular Courses/CC	AMDSC-2	*Additional Multidisciplinary Skill course (AMSC): Any one of the following 1. Nursery training course 2. Basic Yoga practices 3.Physical education/sports management 4. Folk and culture 5. Indian traditional music	2	-	_	2	2
9	Skill Course	SET/CS/SC/C308	Data Structures Using C Lab	-	-	1	4	2
		Total		17	5	3	32	26

Semester III

*L= Lectures, T=Tutorials , P= Practicals

* Common Syllabus for all U.G. courses of the University.

Semester IV

S. No.	Category	Course Co	ode	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/B	T/C401	Object Oriented Programming using C++	3	1	-	4	4
2	Core Subjects	SET/CS/B	T/C402	Operating System	3	1	-	4	4
3		SET/CS/B	ST/C403	Computer Organization and Architecture	3	1	-	4	4
4		SET/CS/B	T/C405	Theory of Computation	3	1	-	4	4
5	Interdisciplinary Subject	SET/CS/B	ST/C404	Data Communication and Computer Network	3	1		4	4
6	Core Subjects Based Labs	SET/CS/B	ST/C406	Object Oriented Programming using C++ Lab	-		1	3	1
7	Dased Labs	SET/CS/B	T/C407	Operating System Lab			1	3	1
8	Indian Knowledge System-I (IKS- 2)	VAC-3		Indian Knowledge System*	2	-	-	2	2
9	Skill Course	SET/CS/SC	C/C408	Mini Project (Based on C/C++)			1	4	2
			Total		17	5	3	32	26

*L= Lectures, T=Tutorials , P= Practicals

* Common Syllabus for all U.G. courses of the University.

Entry/Exit Option with Under Graduate Diploma in Computer Science and Engineering, may be allowed after completion of the 2nd year, and as per requirements defined in the admission procedure and eligibility of the School.

Semester V

S. No.	Category	Course Code	Course Title	L	Т	Ρ	Contact Hrs./Week	Credits
1		SET/CS/BT/C501	Database Management System	3	1	-	4	4
2	Core	SET/CS/BT/C502	Design and Analysis of Algorithms	3	1	-	4	4
3	Subjects	SET/CS/BT/C503	Software Engineering	3	1	-	4	4
4			Program Elective-1	3	1	-	4	4
5	Open Elective/Int er- disciplinary Subject		Open Elective-1	3	1		4	4
6	Core	SET/CS/BT/C504	Database Management System Lab	-		1	3	1
7	– Subjects Based Labs	SET/CS/BT/C505	Design and Analysis of Algorithms Lab			1	3	1
8	Extracurricu lar Courses/Co mpulsory course	SET/CS/BT/M506	*Culture, traditions and moral values/ Yoga Practices	-	-	1	4	2
9	Skill Course	SET/CS/SC/C507	Python Lab			1	4	2
		Total	·	15	5	4	34	26

*L= Lectures, T=Tutorials , P= Practicals

* University will prepare a course with focus on Indian/ Regional culture studies. In case no syllabus is prepared by the university then Yogabhyas course will be offered.

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	Ducaria	SET/CS/BT/E501	Distributed Computing	3	1	-	4	4
2	Program Elective-1	SET/CS/BT/E502	Graph Theory	3	1	-	4	4
3		SET/CS/BT/E503	Principles of Programming Languages	3	1	-	4	4
1	Open	SET/CS/BT/OE501	Java Programming	2	1	1	4	4
2	Open Elective-1	SET/CS/BT/OE502	Project Management	3	1		4	4
3		SET/CS/BT/OE503	Optimization Techniques	3	1		4	4

Elective and Open Elective Courses

Semester VI

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/C601	Compiler Design	3	1	-	4	4
2	Core	SET/CS/BT/C602	Computer Graphics	3	1	-	4	4
3	Subjects	SET/CS/BT/C603	Cryptography and Network Security	3	1	-	4	4
4			Program Elective-2	3	1	-	4	4
5	Open Elective/Int er- disciplinary Subject		Open Elective-2	3	1		4	4
6	Core Subjects	SET/CS/BT/C604	Compiler Designing Lab	-		1	3	1
7	Based Labs	SET/CS/BT/C605	Computer Graphics Lab			1	3	1
8	Communicati on skills/CC	SET/CS/BT/M606	Communication skill Course* /Technical Seminar	-	-	1	4	2
9	Skill Course	SET/CS/SC/C607	Mini Project			1	4	2
		Tota	al	15	5	4	34	26

*L= Lectures, T=Tutorials , P= Practicals

* University will prepare communication courses in Modern/Indian languages from which student will select one language course. The course will be more on applied side with giving students a chance to develop their soft skills. In case no syllabus is prepared by the university then Technical Seminar course will be offered

Program	Elective	and Open	Elective	Courses
---------	----------	----------	----------	---------

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/E601	Data Mining and Data Warehousing	3	1	-	4	4
2	Program	SET/CS/BT/E602	E-Commerce	3	1	-	4	4
3	Elective-2	SET/CS/BT/E603	Data Science	3	1	-	4	4
1	Onen	SET/CS/BT/OE601	Robotic Engineering	3	1	-	4	4
2	Open Elective-2	SET/CS/BT/OE602	Web Technology	3	1		4	4
3		SET/CS/BT/OE603	Digital Image Processing	3	1		4	4

Note: Entry/Exit Option with Advanced Diploma/ Bachelor degree in Vocational Education (Computer Science and Engineering), may be allowed after completion of <u>SSD course work</u> in any one semester within one to six semesters and successfully completing three years, and as per requirements defined in the admission procedure and eligibility of the School.

Semester VII

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/C701	Artificial Intelligence	3	1	-	4	4
2	Core Subjects		Program Elective-3	3	1	-	4	4
3			Program Elective-4	3	1	-	4	4
4	Core Subjects	SET/CS/BT/C702	Artificial Intelligence Lab	-	-	1	3	1
5	Subjects Based Labs/Indust rial Oriented Training	SET/CS/BT/S703	Industrial Training Seminar	-	-	1	3	1
6	Life Skills and personality development		Essential Management Practices*	2	-	-	2	2
7	Skill Course	SET/CS/SC/C704	Project Stage-1	-	-	1	8	4
	•	Total		11	3	3	28	20

*L= Lectures, T=Tutorials , P= Practicals

* University will prepare a course with focus on essential management practices.

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	Brogram	SET/CS/BT/E701	Wireless and Mobile Computing	3	1	-	4	4
2	Program Elective-3	SET/CS/BT/E702	Security Architecture & Operating System Security	3	1	-	4	4
3		SET/CS/BT/E703	Neural Network	3	1	-	4	4
1	Brogram	SET/CS/BT/E704	Real Time System	3	1	-	4	4
2	Program Elective-4	SET/CS/BT/E705	Cloud Computing	3	1	-	4	4
3		SET/CS/BT/E706	Computer Vision	3	1	-	4	4

Semester VIII

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	Carro	SET/CS/BT/C801	UNIX Shell Programming	3	1		4	4
2	Core Subjects		Program Elective-5	3	1	-	4	4
3			Program Elective-6	3	1	-	4	4
4	Life Skills and personality development		Disaster Management	-	-	1	4	2
5	Skill Course	SET/CS/SC/C803	Project and Dissertation			1	12	6
		Total		9	3	2	28	20

*L= Lectures, T=Tutorials , P= Practicals

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/E801	Natural Language Processing	3	1	-	4	4
2	Program	SET/CS/BT/E802	Internet of Things (IoT)	3	1	-	4	4
3	Elective-5	SET/CS/BT/E803	Machine Learning	3	1	-	4	4
4		SET/CS/BT/E804	Big Data Analytics	3	1	-	4	4
1			Cyber Security and Ethical Hacking	3	1	-	4	4
2	Program		Mobile Application Development	3	1		4	4
3	Elective-6	SET/CS/BT/E807	Blockchain Technology	3	1		4	4
4		SET/CS/BT/E808	Deep Learning	3	1		4	4

After successful completion of the eight semester program the student will be eligible for the award of B. Tech. degree in Computer Science and Engineering.

Detailed Syllabi

		0						
S. No.	Category	Course Code	Course Code and Title	L	Т	Р	Contact Hrs./Week	Credits
1	Basic	SET/SH/BT/C101	Mathematics I	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C103	Chemistry	3	1	-	4	4
3	Core Basic	SET/ME/BT/C104	Engineering Mechanics	3	1	-	4	4
4	Engineering Subjects		Basic Mechanical Engineering	3	1	-	4	4
5		SET/CS/BT/C105	C Programming	3	1		4	4
6	Core/Basic	SET/SH/BT/C108	Chemistry Lab	-		1	3	1
7	Engineering Subjects Labs	SET/CS/BT/C109	C Programming Lab			1	3	1
8	Extracurricular Courses/CC		Understanding and Connecting Student with Environment*	2	-	-	2	2
9	Skill Course	SET/CS/SC/C110	Internet Technology Lab-I (Skill Enhancement Course)	-	_	1	4	2
		Total		17	5	3	32	26

Semester I

* Common syllabus for all UC Courses of the University.

	SET/SH/BT/C101 MATHEMATICS- I			
Course Objective Course	 To impart a deep understanding of the fundamental concepts a calculus, vector calculus, and matrices. To develop the ability to apply these mathematical principles to engineering, physics, and other sciences. To enhance analytical and critical thinking skills through the algebra. To prepare students for advanced studies and research in mather 5. To foster a comprehensive understanding of the theoretical and matrix theory. Students will be able to understand and apply the concept 	solve real-world problems in study of calculus and linear natics and related fields. I practical aspects of calculus		
Outcome	 Students will be able to understand and apply the concepts of limit, continuity, and differentiability for single and multivariable functions. Students will gain proficiency in using vector calculus to solve problems involving gradients, divergences, curls, and applying Gauss's, Green's, and Stokes' theorems. Students will be able to perform matrix operations, understand vector spaces, and apply theorems related to matrices such as the Cayley-Hamilton theorem. Students will develop the skills to solve linear systems, determine the rank of matrices, and find eigenvalues and eigenvectors. Students will be able to apply differential and vector calculus and matrix theory to optimize functions and solve practical problems in various disciplines. 			
Module Name	Content	No. of Hrs.		
Differential Calculus	Limit, continuity and differentiability of single and two variables, mean value theorems, indeterminate forms; partial derivatives, total derivative, Euler's formula, Taylor series (in one and two variables), maxima and minima, Extrema of function of several variables, Lagrange's method.	15		
Vector Calculus	Interpretation of vectors and scalars, directional derivatives, line, surface and volume integrals, gradient, divergence and curl of a vector and their physical interpretation, Gauss's divergence, Green's and Stoke's theorem.	12		
Matrices	Vector space, basis, matrices, determinants, Elementary row and column transformation, linear dependence and independence, rank of matrix, consistency of system of linear equation and solution of linear system of equations. Characteristic equation, Cayley-Hamilton theorem, Eigen values and Eigen vectors, diagonalization, complex matrices.	15		
	Total No. of Hrs.	42		
Textbooks	1. R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mathematics" Publications,	', Narosa		
	2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers	,		
	3. H K Das, "Advanced Engineering Mathematics", S Chand,			
	4. Erwin Kreyszig, "Advanced Engineering Mathematics".			

SET/SH/BT/C1	03 CHEMISTRY			
Course Objective	 Apply the electrochemical principles in batteries, understand the fundamer corrosion. Analysis of water for its various parameters and its significance in industri domestic Applications. Analyse microscopic chemistry in terms of atomic, molecular orbitals and Intermolecular forces Analysis of major chemical reactions that are used in the synthesis of mole 			
Course Outcome	5. V. Understand the chemistry of various fuels and their combustion.			
	 electric energy, i.e. batteries. 2. Explain the mode by which potable water is produced through the screening, micro Straining, aeration, coagulation and flocculation, flotation, filtration and disinfection. 3. Recognize that molecular orbital theory is a method used by chemenergy of the electron in a molecule as well as its geometry. 4. Demonstrate an ability to design, implement, and evaluate the rest experimentation using standard scientific methodologies such as h and testing. 5. Understand and analyse the combustion mechanisms of various fully a standard scientific methodologies. 	sedimentation, hists to determine the ults of hypothesis formulation		
Module Name	Content	No. of Hrs.		
Advanced Theory of Chemical Bonding	Valence bond and molecular orbital theory. Structure of NH3, H2O, SO3, PC15, XeO2 molecules. Types of linkages, Hybridization, Hydrogen bonding, Metallic bonding.	4		
Equilibrium on Reactivity	Bronsted and Lewis Acids, pH, pka, pkb scale, buffer solution.	4		
Polymers	Structures of the following polymers, viz, Natural and synthetic rubbers, Polyamide and Polyester fibres, polymethylmethacrylate, poly acrylonitrile and polystyrene. A brief account of conducting polymers (polypyrrole & polytiphene) & their applications.	3		
Complex Compounds	Introduction, Valence bond and crystal field theory.	4		
Chemical Kinetics & Catalysis	Order of reactions, Parallel and reversible reactions. Catalysis- homogeneous and heterogeneous catalysis. Characteristics of catalytic reactions, catalytic promoters and poisons, auto catalysis and negative catalysis. Activation energy of catalysis, intermediate compound formation theory and adsorption theory.	3		
Atmospheric Chemistry& Air Pollution	Environment and ecology, environmental segments, structure and composition of atmosphere, radiation balance of earth and Green House Effect, formation and depletion of Ozone layer, chemical and photochemical reactions of various species in atmosphere, air pollution- sources, reactions and sinks for pollutants, acid rains and smog formation. Pollution control methods.	5		
Corrosion & Lubricants	Introduction, causes of corrosion, theories of corrosion- direct chemical attack, electrochemical theory of corrosion, factors influencing corrosion, corrosion inhibitors, passivity, types of corrosions, protection from corrosion and protective coatings. Theory, classification and mechanism of lubrication.	5		
Water and Waste Water Chemistry	Introduction, hardness of water, characteristics imparted by impurities, analysis of contaminants, treatment of water by Zeolite, L-S process, boiler feed water, waste water treatment.	6		
Fuels & Combustion	Classification of fuels, non-conventional energy, biogas, biomass and solar energy, calorific value – gross and net, characteristics of good fuel, determination of calorific value, solid fuels, analysis of coal, liquid fuels.	5		
Stereochemistry of organic- compounds	Mechanism of chemical reaction, Beckman, Hoffman, Reimer Tiemann, Cunnizzaro, Diels- Alder and Skraup synthesis.	3		

	Total No. of Hours 42			
Textbooks	1. Jain, Jain, "Engineering Chemistry"			
	2. Sharma, Kumar, "Engineering Chemistry"			
References	1. R. T. Morrison and R N Boyd, "Organic Chemistry", 6th Edition, Prentice Hall, New Delhi,			
	2. J. D. Lee, "Concise Inorganic Chemistry", Chapman & Hall			
	3. W. L. Jolly, "Modern Inorganic Chemistry", McGraw-Hill			
	4. P.W. Atkins, "Physical Chemistry", 6th Edition, Oxford University Press			
	5. Barrow, "Physical Chemistry"			
	6. Manahan, "Environmental Chemistry"			
	7. D. L. Pavia, GM. Lampman, GS. Kriz and J.R Vyvyan, I, "Spectroscopy", Cengage Learning			
	India Pvt. Ltd, New Delhi, 2007			
	8. R.M. Silverstein, F.X. Webster and D.J. Kiemle, "Spectrometric Identification of Organic			
	Compounds", 7th edition, John-Wiley and Sons, New York, 2005			
	9. William Kemp, "Organic Spectroscopy", 3rd edition, Palgrave, New York, 2005			
	10. C.N. Banwell and E. M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw-Hill,			
	International, UK, 1995			
	11. F. Carey, "Organic Chemistry", 5th Edition, McGraw Hill Publishers, Boston, 2003			

SE	T/ME/BT/C104 ENGINEERING MECHANICS	
SE Course Objective Course Outcome	 To understand distributed force systems, centroid/ centre of gravity and method of centroids of composite figures and bodies. To understand the moment of inertia and method of finding moment of inertia of at bodies. To understand types of frames and analyse for the forces in the members of the true method of joints and method of sections. To understand dynamics of a particle. To interpret the simple given dynamic problems and solve them for positions, velo accelerations, etc., To understand the kinetics of the rigid bodies and solve simple problems using wormethod. • To understand virtual work method and solve simple problems. Identify the significance of centroid/ centre of gravity and find centroids of compositions. 	finding reas and ss by cities and ck-energy site figures
	 Understand the moment of inertia and method of finding moment of inertia of area bodies. Identify the type of frame and analyse for the forces in the members of the truss (fr method of joints and method of sections. Understand dynamics of a particle. Interpret the simple given dynamic problems and solve them for positions, velocitie accelerations, etc., Understand the kinetics of the rigid bodies and solve simple problems using work-method. • Understand virtual work method and solve simple problems. 	rame) by es and
Module Name	Content	No. of Hrs.
Force System	Introduction: Force system, dimensions and units in mechanics, laws of mechanics, vector algebra, addition and subtraction of forces, cross and dot products of vectors, moment of a force about a point and axis, couple and couple moment, transfer of a force to a parallel position, resultant of a force system using vector method, Problems involving vector application Equilibrium: Static and dynamic equilibrium, static in determinacy, general equations of equilibrium, Varingnon's theorem, Lami's theorem, equilibrium of bodies under a force system, Problems.	8
Trusses And Frames	Truss and Frames: Truss, classification of truss, assumptions in truss analysis, perfect truss, analysis of perfect plane truss using method of joints and method of sections, Problems.	8
Centre Of Gravity And Moment Of Inertia	Centroid, Centre of mass and Centre of gravity, Determination of centroid, centre of mass and centre of gravity by integration method of regular and composite figures and solid objects, Problems, Moment of Inertia: Area moment of inertia, mass moment of inertia, parallel axis and perpendicular axis theorems, radius of gyration, polar moment of inertia, product of inertia, principle axis, problem based on composite figures and solid objects.	10
Friction and Virtual Work	Friction-characteristics of dry friction, problems involving friction of ladder, wedges and connected bodies. Definition of virtual work, principle of virtual work for a system of connected bodies	7
Kinematics And Dynamics	Kinematics: Concept of rigid body, velocity and acceleration, relative velocity, translation and rotation of rigid bodies, equations of motion for translation and rotation, problems. Particle Dynamics: Energy methods and momentum methods, Newton's laws, work energy equation for a system of particles, linear and angular momentum equations, projectile motion, problem.	12
Textbooks	Total No. of Hours 1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics".	45

References	1. Van Wylen G.J. & Sonnlog R.E.: Fundamentals of classical thermodynamics, John Wiley &
	Sons, Inc. NY.
	2. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY.
	3. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY.
	4. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central Publishing
	House Allahabad.
	5. Yadav R.: Steam & Gas Turbines.
	6. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranjan Avenue,
	Calcutta.
	7. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi.
	8. G. H. Ryder: "Strength of Materials".
	9. F. L. Singer: "Strength of Materials".
	10. Timoshenko: "Strength of Materials".

SET/I	ME/BT/C102 BASIC MECHANICAL ENGINEERING	
Course Objective	1. To use mechanical principles to solve real-world engineering issues.	
	2. To identify appropriate structural system for studying a given problem and iso	late it from
	its environment.	
	3. Develop a simple mathematical model for an engineering problem and perform	n a static
	analysis.	alaa
Course Outcome	 4. To carry out kinematics and Kinetics analysis for practices and system of partial. Students will be able to apply and demonstrate the concept of mechanics to practice. 	
Course Outcome	engineering problems.	actical
	2. Students will be able to determine the properties of planes and solids.	
	3. Students will be able to apply the basic concept of dynamics to practical probl	ems.
Module Name	Content	No. of
		Hrs.
Fundamental concept of		8
thermodynamics	continuum, Macroscopic & microscopic point of view. Thermodynamic equilibrium,	
	Property, State, Path, Process, Cyclic and non-cyclic processes, Reversible and irreversible processes, Quasi static process, Energy and its forms, Enthalpy, Zeroth law,	
	first law, second law and third law of thermodynamics, Steady flow energy equation,	
	Limitations of first law of thermodynamics, Essence of second law, Thermal reservoir,	
	Heat engines. COP of heat pump and refrigerator, Carnot cycle, Carnot theorem,	
	Clausius inequality, Concept of entropy.	
Properties of gases and	Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's law, Combined gas law, Gas	5
steam	constant, Relation between c_p and c_v , Various non-flow processes like constant volume	
	process, constant pressure process, Isothermal process, Adiabatic process, Polytropic	
	process.	
	Steam formation, Enthalpy, Specific volume, Internal energy and dryness fraction of steams,	
	steam calorimeters.	
Thermodynamic Cycle	Rankine cycle, Actual vapour cycle processes, Comparison of Rankine and Carnot	8
	cycles, Air standard cycles - Otto, Diesel, dual and Brayton cycles, Vapour compression	
Introduction to	refrigeration cycles.	0
Mechanics of Solid:	Normal and shear Stress, strain, Hookes' law, Poisson's ratio, elastic constants and their relationship, stress-strain diagram for ductile and brittle materials, factor of safety. Basic	8
Mechanics of Sonu.	Numerical problems, temperature stresses, shear stress, complementary shear stress,	
	shear strain.	
Compound Stresses and	State of stress at a point, oblique stress, simple tension, pure shear, general two	8
Strains	dimensional stress system, principal planes, principal stresses and strains, maximum	
	shear stress.	
Bending Stress and	Pure bending, moment of inertia, section modulus, bending stresses, combined bending	8
Torsion	and direct stress, beam of uniform strength, middle third and middle quarter rules for	
	rectangular and circular sections, Circular shafts, torsional shear stress, strain energy in	
	torsion, shafts under varying torque, compound shafts, combined bending and twisting.	
	Total No. of Hours	45
Textbooks	1. R S Khurmi, "Engineering Mechanics".	45
ICALDOURS	 P K Nag "Engineering Thermodynamics". 	
References	1. Van Wylen G.J. & Sonnlog R.E.: Fundamentals of classical thermodynamics, John Wil	ev &
References	Sons,Inc. NY.	icy a
	2. Wark Wenneth : Thermodynamics (2nd edition), Mc Graw Hill book Co. NY.	
	3. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY.	
	4. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (Sl Edition) Central Publishi	ng House
	Allahabad.	
	5. Yadav R.: Steam & Gas Turbines.	a .
	6. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranjan Avenue, C	Calcutta.
	7. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi.	
	8. G. H. Ryder: "Strength of Materials".	
	9. F. L. Singer: "Strength of Materials".10. Timoshenko: "Strength of Materials".	
	11. Beer, Johnson, Statics".	

	SET/CS/BT/C105 C PROGRAMMING	
Course Objective	 To introduce the fundamental concepts of programming using the C languag To develop problem-solving skills and logical thinking through the creation of C programs. To teach the use of control statements, functions, pointers, arrays, and data s To provide hands-on experience with file input/output operations in C. To prepare students for more advanced programming courses and practical a various fields. 	and execution tructures in C.
Course Outcome	 Develop programs in C programming language. Analyze the problem and find appropriate solution Evaluate the correctness of the developed solution. Develop basic and advanced level applications using C programming language 	ıge.
Module Name	Content	No. of Hrs.
Introduction	Introduction, The C character set, Constants, Variables, Identifiers, Keywords, Data types, Declarations, The First C Program, Compilation and Execution.	6
Operators and Expressions	Arithmetic, Relational, Equality, Logical, Unary, Conditional, Bitwise, Assignment, Comma and Size of operator. Type Conversion and Typecasting.	6
Control Statements	if, if-else, while, do-while, for loop, nested loops, switch, break, continue and goto statements.	5
Functions & Pointers	Defining and accessing functions, Function prototype, Passing arguments, Recursion, Use of library functions. Introduction to pointers, Declarations, Passing to a function, Operations on pointers, Dynamic memory allocation, Array of pointers.	11
Arrays	Single and Multi-dimensional arrays, Row major and Column major form of an array, Character strings and arrays.	4
Storage classes	Automatic, Register, Static and External storage class.	4
Structures and Unions	Basics of structures, Structures and functions, Arrays of Structures, Pointers to structures, Self-referential structures, Unions.	4
File Input/output	Opening a File, Reading from a file, closing the file, Writing to a file.	4
Total No. of Hours		44
	1	
Textbooks	1. E. Balagurusamy, "Programming in ANSI C"	
References	 B. Bungdrusaniy, "Programming in Privor C Byron S. Gottfried, "Programming With C" Yashwant Kanitker, "LET US C" B. W. Kernighan and D. M. Ritchie, "The C Programming Language" B. W. Kernighan, "The Practice of Programming", Addison-Wesley, 1999. C. L. Tondo and S. E. Gimpel, "The C Answer Book", (2/e), Prentice Hall, 1988. 	

	SET/SH/BT/C108	CHEMISTRY LAB	
Modu	le Name	Content	No. of Hrs.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	To determine the ferrous con standard K2Cr2O7 solution To determine the chloride co To determine the constituen To determine the temporary To find chemical oxygen de To determine iron concentra To determine the molecular To determine pH of a solution	e of available chlorine in the supplied sample of bleaching powder. ntent in the supplied sample of iron ore by titrimetric analysis against using K3Fe(CN)6 as external indicator. ontent in supplied water sample using Mohr's method. ts and amount of alkalinity of the supplied water sample. and permanent hardness of water sample by complexometry. mand of a waste water sample using Potassium Dichromate. tion in the sample of water by Spectrophotometric method. weight of a polystyrene sample by using viscometric method. on by using digital pH meter and titration of such a solution pH metrically. <i>y</i> proximate analysis method.	3 x 10
		Total No. of Hours	30

SET/CS/BT/C109	C PROGRAMMING LAB		
Course	1. To make the student learn a programming language.		
Objective:	2. To learn problem solving techniques.		
	3. To teach the student to write programs in C and to	o solve the problems.	
Course Outcome:	1. After Completion of this course the student would	l be able to	
	2. Read, understand and trace the execution of prog	ams written in C language.	
	3. Write the C code for a given algorithm.		
	4. Implement Programs with pointers and arrays, pe	rform pointer arithmetic, and use the pre-	
	processor.	•	
	5. Write programs that perform operations using det	ived data types.	
Content		No. of Hrs.	
This lab shall have minimu	um 25 programs in C. There shall be minimum two program	S	
per module as taught ir	per module as taught in theory. Programming shall follow logic/algorithm and flowchart wherever applicable. Exercises shall also enhance analytical and debugging abilities.		
	Total No. of Hours	32	

VAC-1 Understanding and Connecting Student with Environment*

As per University Proposal and Approval

S	ET/CS/SC/C110 Internet Technology Lab-I	
	(Skill Enhancement Course)	
Course Objective:	1. To make the student learn a programming language.	
	2. To learn Microsoft office techniques.	
	3. To learn computer network and trending techniques	
Course Outcome:	 After Completion of this course the student would be able to h automation techniques and implement on day to day activities Working with computer networking equipment and email 	
	3. Implement Programs to design web development	
Module Name	Content	No. of Hrs
Module I	Working with Microsoft Office (Word, Excel, Power Point, Access)	10
Module II	Use of Search Engine and World Wide Web, Creation of email id and working with email, Use of FTP service	10
Module III	Basics of Cloud computing, Internet of things (IoT), Data Science, Artificial Intelligence, Block-Chain Technology, Client-Server Architecture, P2P Networks	10
	Besides these additional experiments can be included to give hands on experience to students.	
	Total Hours	30

Semester II

a 11				L	Т	Р	Contact	Credits
S. No.	Category	Course Code	Course Code and Title	_	-	-	Hrs./Week	0100105
1	Basic	SET/SH/BT/C201	Mathematics II	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C202	Physics	3	1	I	4	4
3	Core Basic	SET/EE/BT/C203	Basic Electrical Engineering	3	1	I	4	4
4	Engineering	SET/EC/BT/C204	Basic Electronics	3	1	-	4	4
5	Subjects	SET/IT/BT/C205	Fundamental of Information Technology	3	1		4	4
6	Core/Basic	SET/SH/BT/C207	Physics Lab	-		1	3	1
7	Subjects Based Labs	SET/ME/BT/C208	Engineering Graphics and Workshop Practice			1	3	1
8	Life Skills and personality development		A Life Skills and personality Development*	2	-	-	2	2
9	Skill Course	SET/CS/SC/C210 or SET/CS/SC/C211	Basics of Python Lab	-	_	1	4	2
		Total	-	17	5	3	32	26

* Common syllabus for all UC Courses of the University.

	SET/SH/BT/C201 MATHEMAT	TICS-II
Course	 To provide an in-depth understanding of multiple integra various fields. To introduce the concepts and applications of Fourier ser transforms. To familiarize students with the principles and technique 	ries and integral
Objective:	 statistics. 4. To develop analytical skills for solving complex problem statistical analysis. 5. To prepare students for advanced studies and research in and physical sciences. 	0 0
Course Outcome:	 Students will be able to evaluate double and triple integration of compute area, volume, centre of gravity, and moments of inertia. Students will understand and apply the concepts of Fourier periodic functions and solve related problems. Students will gain proficiency in using Laplace transform differential equations and understand their applications in various Students will learn the fundamental concepts of probabil different types of distributions and their properties. Students will be able to perform statistical analyses, inclusing regression, and conditional probability, and apply Bayes theorem 	ier series to represent ns to solve linear contexts. ity and statistics, including uding correlation,
Module Name	Content	No. of Hrs.
Multiple Integral	Evaluation of definite integral; double and triple integrals; change of order of integration. Change of variables, application to area, volume, centre of gravity, moment of inertia and product of inertia. Gamma and Beta functions, Dirichlet's integral and its application.	12
Fourier Series	Periodic functions, Fourier series of functions with period 2n, change of interval, half range sine and cosine series	6
Integral Transform	Laplace transforms, existence theorem, Laplace transform derivatives, inverse Laplace transform, application to solve linear differential equations, unit step function, Dirac delta function, Laplace transforms of periodic functions. Application of Laplace transforms. Definitions of Fourier transform and its simple applications	14
Probability and Statistics	Random variables. Uniform, normal, exponential, Poisson and binomial distributions. Mean, median, mode and standard deviation, Correlation and regression, Conditional probability and Bayes theorem	12
	Total No. of Hrs.	44
Textbooks	1. R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mathematics" Publications,	', Narosa
	2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers,	,
	3. H K Das, "Advanced Engineering Mathematics", S Chand,	
	4. Erwin Kreyszig, "Advanced Engineering Mathematics".	

	SET/SH/BT/C202 PHYSICS	
Course Objective	1. To introduce the student to the basic of wave optics, lasers, and demonstra	te their
Course Outcome	 applications in technology. 2. To make students aware about quantum physics phenomena. 3. Give the beginning student an appreciation of recent developments in mate engineering within the framework of this class. 4. To review physics in the context of materials science & engineering. 5. Give an introduction to the relation between processing, structure, and phy 6. To make the students aware about Electromagnetic wave fundamentals. 1. Demonstrate interference, diffraction and polarization of light and exprinciple of Lasers. 	vsical properties.
	 Student will understand quantum mechanical aspects of physics. Enable to explain the phenomenon of crystal structure and crystallogr description of X-ray diffraction and its general physical properties, a applications. Students will understand the phenomenon of defects in solids and their p band theory of solids and classification of energy bands, electric and ma solids and able to explain qualitative idea of superconductivity in mater This will enable the students to learn physical concepts associated wir radiation and devices. Use Maxwell's equations to describe propagation of EM waves in a me 	as well as possible physical properties, gnetic properties of ials. ith electromagnetic
Module Name	Content	No. of Hrs.
Quantum	Interference: Coherent Sources, Conditions of Interference, Fresnel's Biprism Experiment, Interference in Thin Films, Newton's Rings; Single and n-Slit Diffraction, Diffraction Grating, Raleigh's Criterion of Resolution, Resolving Power of Telescope, Phenomenon of Double Refraction, Ordinary and Extraordinary Rays, Nicol Prism, Circularly and Elliptically Polarized Light, Fresnel Theory, Optical Activity, Specific Rotation; Laser: Principle of Laser Action, Einstein's Coefficients, Construction and Working of He-Ne and Ruby Laser, Applications of Laser. Black body radiation, Planck's Radiation Law, Wave Particle Duality, deBroglie hypothesis, Photoelectric effect, Wave Function and its Normalization, Born Interpretation, Schrodinger equation, Particle in a Box, Potential Step ($E < Vo$), Tunnelling effect (Qualitative idea). Introduction to crystal structure of materials, Miller indices for crystallographic planes and directions. Diffraction of X-Rays, Bragg's Law, Determination of crystal structure using X-rays Diffraction and its applications. Defects in solids: point, line and planar defects and their effect on properties of materials. Band theory of solids, conductors, semiconductors and insulators, metals. Fermi Level. Magnetism: dipole moments, paramagnetism, Curie's law, magnetization and hysteresis, Ferromagnetism and Anti- Ferromagnetism. Ferro electricity and Piezoelectricity.	15 10 15
Electromagneti cs	Ampere's Law and Displacement Current, Maxwell's Equations in Integral and Differential Forms, Electromagnetic Wave Propagation in Free Space and Conducting Media, Poynting Theorem.	8
	Total No. of Hours	48
Textbooks 1. 2. References 1. 2. 3. 4. 4. 3.	 Gaur, Gupta, "Engineering Physics" Callister W.D., "Materials Science and Engineering: An introduction", 6th Edi Sons Inc., New York 2002. J. R. Taylor, C.D. Zafiratos and M. A. Dubson, Modern Physics for Scientists Pearson Arthur Beiser, Concepts of Modern Physics, 6th Ed., TMH, (2009) D.J. Griffith : Electrodynamics Charles Kittel, Introduction to Solid State Physics, 	
4. 5. 6.	S.O. Pillai, Solid State Physics, Ajoy Ghatak- Optics	

	SET/EE/BT/C203 BASIC ELECTRICAL ENGINEERING	
Course Objective	 To impart basic knowledge of electrical quantities and provide working knowledge for the DC and AC circuits. To understand the construction and working principle of DC and AC machines. To understand the construction and working principle of various instruments. To understand the construction and working principle of 3- phase supply system. 	analysis of
Course Outcome	 Understand the basic electric and magnetic circuits. Analyze DC and AC circuits. Interpret the construction and working of different types of electrical machines and instrun Analyze basic electrical components and circuits. 	nents.
Module Name	Content	No. of Hrs.
DC Networks	Concepts of linear, nonlinear, active, passive, unilateral and bilateral elements; Ideal and practical voltage & current sources, conversion from one from the other; Kirchhoff's laws, statements; Mesh Analysis; Nodal Analysis; Delta-Star & Star-Delta conversion; Superposition principle; Thevenin's theorem, statement, advantages in case of complex networks; explanation & illustration with examples; Norton's theorem, Maximum power transfer theorem, Reciprocity Theorem and its application.	10
Single Phase AC Circuits	Generation of single phase AC voltage and determination of average (mean) and RMS (effective) values of voltage and current with special reference to sinusoidal waveforms; Form factor and peak factor for various waves; Representation of sinusoidal time varying quantities as phasors; concepts of reactance, impedance and their representation in complex forms using j operator; Steady state analysis of series R-L-C circuit & its phasor diagram; Concept of power & power factor; Concept of admittance, susceptance in parallel circuits; Analysis of series parallel circuits & phasor diagrams; Resonance in series and parallel circuits.	10
Three Phase Circuits	Generation of 3-phase balanced sinusoidal voltage; star & delta connections; line & phase quantities (current & voltage); Solution of 3-phase star/delta circuits with balanced supply voltage and balanced load; phasor diagram; 3-phase, 4-wire circuits; Measurement of three phase power by two wattmeter method; phasor diagram with balanced load and determination of load power factor from wattmeter readings.	6
Transformer s and Rotating Machines	Transformers: Constructional features and principle of operation, concept of ideal transformer under no load & loaded conditions and its equivalent circuit; Practical transformer rating & its equivalent circuit; Autotransformer – principle of operation & relative advantages & disadvantages; Rotating Machine: construction features (stator, rotor & air gap), conditions for production of steady electromagnetic torque; Three phase Induction motor: constructional features and operation; DC Machines: construction features, EMF and Torque expression, Classification of DC motors and generators; Stepper motor.	12
Measuring	DC PMMC instruments – constructional feature and principle of operation; Moving iron meters	6
Instruments	construction and principle of operation; Dynamometer type wattmeter; Induction type energy meter construction & principle of operation.	-
The set la set l	Total No. of Hours	44
Textbooks References	 I.J. Nagrath, "Basic Electrical Engineering," Tata Mc. Graw Hill. A. E. Fitgerald, D.E., Higginbotham and A Grabel, "Basic Electrical Engineering", Mc Graw Hil Rizzoni, Principles and Applications of Electrical Engineering, TMH. V. Del Toro. "Principles of electrical Engineering, "Prentice hall. W.H. Hayt & J.E. Kemmerly," Engineering circuit Analysis, "Mc Graw Hill. H. Cotton, "Advanced Electrical Technology" Wheeler Publishing. 	1.

	SET/EC/BT/C204 Basic Electronics	
Course Objective	To familiarize the students with electronics field. To introduce semiconductor fu electronic devices, and elementary electronic circuits. To familiarize students wit and gates.	
Course Outcome	 Understand the working and current voltage characteristics of semiconductor d diodes and transistor. Perform dc analysis of amplifier circuits. Design basic OP AMP circuits. Understand and use basic digital electronic concepts. 	evices e.g.
Module Name	Content	No. of Hrs.
Semiconductor Diodes	Semiconductor materials- intrinsic and extrinsic types, Ideal Diode as a switch, Terminal characteristics, and equivalent circuit of PN diode: p-n junction under open circuit condition, p-n junction under forward bias and reverse bias conditions, p-n junction in breakdown region; Zener diode and basic voltage regulator using Zener diode; Rectifier Circuits, Clipping and Clamping circuits; LED, Photo Diode.	10
Bipolar Junction Transistors	Physical structure, physical operation and current-voltage characteristics of NPN transistor; Use of Voltage-dependent Current source as a Voltage amplifier; Transistor as an amplifier: Characteristics of CE amplifier; Active region operation of transistor; D.C. analysis of Common Emitter Amplifier: load line analysis; Transistor as a switch: cut-off and saturation modes.	10
Field Effect Transistor	Enhancement-type MOSFET: structure and physical operation, currentvoltage characteristics; MOSFET as a Switch, MOSFET as a Voltagedependent Current source and Common Source Amplifier.	8
Operation Amplifier	Ideal Op-amp; Properties of the ideal Operational Amplifier; op-amp application circuits (assuming ideal op amp): inverting amplifier, non inverting amplifier, weighted summer, integrator, and differentiator.	6
Digital Logic and Gates	Binary, octal, and hexadecimal number systems; Methods of base conversions; Binary, octal, and hexadecimal arithmetic; Representation of signed numbers; Basic logic operations and logic gates; MOSFET Switch Implementation of Logic Gates, e.g., Inverter, NAND, NOR. Basic postulates and fundamental theorems of Boolean algebra.	8
	Total No. of Hours	42
Textbooks	 Agarwal, Anant; Lang, Jeffrey H, "Foundations of Analog and Digital Elect Elsevier Science & Technology Books. 	tronic Circuits",
References	 V. Del Toro, Principles of Electrical Engineering, PHI. Rizzoni, Principles and Applications of Electrical Engineering, TMH. Malvino, Electronic Principles. R.L.Boylestad & L.Nashelsky, Electronics Devices & Circuit Theory, PHI. Sedra, Smith, "Microelectronic Circuits", Oxford University Press. 	

SET/IT/I	ST/C205 Fundamentals of Information Tech	nology
Course Outcome	 Take on significant positions In various IT work Collaborate in diverse team environments Contributions in the field of IT Work effectively in the IT field to make a positive contribution to society Develop information technology solutions by evaluating user requirements in development environment. Apply knowledge of IT requirements for technology solutions in cutting edges app Analyze a problem and identify and define the computing requirements for the solutions. Create, select and apply appropriate techniques, resources, and modern engineering 	lications. e appropriate
Module Name	Content	No. of Hrs.
Introduction	Definition of Electronic Computer, Generations, Classification of Computers, Computer Hardware and Basic Computer Organization: CPU- ALU, CU; RAM/ROM, Various I/O devices, Peripherals, Storage Media	4
Computer Languages	Binary, Hexadecimal Number System; Basic Binary Logic Operations; Binary Addition and Subtraction; Generation of Languages, Assembly Language, High level language; Translators, Interpreters, Compilers, Compilers; Flow Charts, Dataflow Diagram,	6
OS & Office	Software- System and Application Software; Elementary Concepts in Operating System; Textual Vs GUI, Introduction to DOS, MS Windows, UNIX/Linux	4
Computer Networks	Elements of Communication system; Brief Introduction to Computer Networks- Introduction of LAN and WAN. Network Topologies, Client-server Architecture, IoT, Cloud Computing	6
Internet	Internet & World Wide Web, Hypertext Markup Language, DHTML, Python, WWW, Gopher, FTP, Telnet, Web Browsers, Net Surfing, Search Engines, Email; Introduction to Web Development, Static and Dynamic Pages	6
IT Application and Multi media	Basic Awareness of NICNET and ERNET; E Commerce, E governance; Brief Introduction to Different Formats of Image, Audio, Video	6
Information Concepts & Processing	Definitions of Information, Need of information, quality of information, value of information, concept of information, Entropy category and Level of information in Business Organization, Data Concepts and Data Processing, Data Science, Data Representation, Application of IT to E-commerce, Electronic Governance, Multimedia, Entertainment, Introduction to Information System.	8
	Total No. of Hours	40
	 Sinha, Sinha, "Computer Fundamentals", Yadav R. P., "Information Technology" D S Yadav, "Foundations of IT", New Age, Delhi 	
	 Rajaraman, "Introduction to Computers", PHI Peter Nortans "Introduction to Computers", TMH. Patterson D.A. & Hennessy J.L., "Computer Organization and Design", Morgan K Publishers 	aufmann

	SET/SH/BT/C207 PHYSICS LAB	
Course Objective	1. To introduce students to the experimental verification of fundamental physica	l theories.
-	2. To familiarize students with the principles and applications of spectroscopy, l	
	semiconductor experiments.	
	3. To provide hands-on experience in conducting laboratory experiments related	l to key
	physical concepts.	•
	4. To demonstrate the practical applications of various physical laws and phenor	mena.
	5. To develop students' skills in data analysis, experimental techniques, and scie	
	reporting.	
Course Outcome		about the
	practical knowledge of various theory part.	i de our die
	2. Student will enable to find the refractive index of material, wavelength of more	nochromatic
	source of light.	lioenioniune
	3. Enable to find the efficiency of electric kettle, band gap of materials, behavior	ur of
	semiconductor, charge density and hysteresis curve in ferromagnetic materials	
Sr. No.	Experiments	No. of Hrs.
	-	1101 01 11151
1.	To determine refractive index of glass and liquid using spectrometer.	1x2
2	To determine the morely of an end line using along differentian and in (Use Use	12
2.	To determine the wavelength of spectral lines using plane diffraction grating (Use Hg source).	1x2
3.	To determine the wavelength of sodium light by Newton's Ring method.	1x2
5.	To determine the wavelength of sodium light by Newton's King method.	112
4.	To measure an accessible (Horizontal and vertical) height using sextant.	1x2
5.	Determination of wavelength of He-Ne laser using single slit /N slit diffraction pattern.	1x2
(1.0
6.	To study the photoelectric effect and determine the value of Planck's constant.	1x2
7.	To determine the heating efficiency of an electric kettle with varying voltage.	1x2
7.	To determine the nearing efficiency of an electric kettle with varying voltage.	177
8.	To Determine the wavelength of the semiconductor diode laser.	1x2
9.	Measurement of forward/reverse saturation current in p-n-junction diode at various	1x2
	temperatures and to find the approximate value of energy gap.	
10.	To study the Hall effect and determine Hall coefficient, carrier density and mobility of a	1x2
	given semiconductor material.	
11.	To draw hysteresis curve of a given sample of ferromagnetic material and from this to	1x2
	determine magnetic susceptibility	
12.	Measurement of e/m of electron e/m- Thomson's Experiment	1x2
13.	To verify Ohm's law.	1
15.	10 verity Ohin's law.	1x2
14.	Conversion of Galvanometer into Voltmeter and Ammeter.	1x2
-		
15.	To determine the unknown resistance by a post office box.	1x2
	Total No. of Hours	30

References	 Practical Physics, C.L. Arora, S. Chand & Co. Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

SET	T/ME/BT/C208 Engineering Graphics and Workshop Pr	ractice
	 To introduce students to the fundamental principles of engineering graphics and familiarize them with technical drawing instruments and standards. To develop the ability to create and interpret technical drawings, including projections of points, lines, planes, and solids. To impart practical skills in carpentry, fitting, blacksmithing, welding, and machining through hands-on laboratory experiences. To enhance students' understanding of orthographic projection and its application in creating detailed drawings of machine components. To provide a comprehensive understanding of the operations and applications of various workshop machines such as lathe, shaper, milling, and drilling machines. 	
Course Outcome Module	 Students will be proficient in using drawing instruments and applying current Indian Standard Code of Practice for Engineering Drawing. Students will be able to accurately project points, lines, and planes in different coordinates and understand the concepts of true lengths and traces. Students will develop the skills to project polyhedral and solids of revolution, including projections with axes inclined to reference planes. Students will gain the ability to convert pictorial views into orthographic projections and create detailed technical drawings of machine components. Students will acquire hands-on experience in various workshop practices, including carpentry, fitting, blacksmithing, welding, and machining, enabling them to perform basic manufacturing and assembly tasks. 	No. of Hrs.
Name		
Introduction to Engineering Graphics & Projection of Points	Drawing instruments and their use, Different types of lines, Lettering & dimensioning Familiarization with current Indian Standard Code of Practice for Engineering Drawing. Scales, Plain scales, Diagonal scales, Vernier scales. First angle and third angle projections Projection of points in different coordinates, Projections of lines inclined to one of the reference planes.	08
Projections of lines and planes	Projections of lines inclined to both the planes, True lengths of the lines and their angles of inclination with the reference planes, Traces of lines. Projection of plane lamina of geometric shapes inclined to one of the reference planes, inclined to both the planes, Traces of planes. Projections on auxiliary planes.	08
Projections of polyhedral and solids	Projections of polyhedral and solids of revolution, projection of solids with axis parallel to one of the planes and parallel or perpendicular to the other plane, Projections with the axis inclined to one of the planes.	08
Orthographic Projection	Concept of orthographic projection, Rules of Drawing orthographic projection, Conversion of pictorial views into orthographic projection, Drawing of orthographic projection of Machine components.	08
Carpentry, Fitting and Black smithy	Minimum two experiments from Carpentry, Fitting and Black smithy. And Development of jobs carried out and soldering, Black Smithy, House Wiring, Foundry (Molding only), Plumbing.	08
Welding & Machining	Practice of minimum two experiments of welding joints. Overview of Lathe, Shaper, Milling and Drilling machine. Perform one job on each machine. Total No. of Hours	08 48
Textbooks	 Bhatt N. D, Elementary Engineering Drawing, Charotar Publishing Hou Elements Of Workshop Technology Vol-1 by Hazra Chaudhary 	

References	1. Narayana K L & Kannaiah P, Engineering Graphics, Tata McGraw Hill, New Delhi, 1992.
	2. Luzadder W J, Fundamentals of Engineering Drawing, Prentice Hall of India, New Delhi, 2001.
	3. Thomas E French & Charkes J V, Engineering Drawing & Graphing Technology, McGraw Hill
	Book Co, New York, 1993.
	4. Venugopal K, Engineering Drawing & Graphics, New Age International Pvt. Ltd., New Delhi, 1994.
	5. Workshop Technology, Raghubanshi.

VAC-2 A Life Skills and personality Development*

As per University Proposal and Approval

	SET/CS/SC/C210 Internet Technology Lab-II (Skill Enhancement Course)					
Course Objective:	 To make the student learn about web development. To learn about static and dynamic web pages. 					
Course Outcome:	 After Completion of this course the student would be able to know abou Working with HTML/CSS/Javascript for designing web pages. 	it the web development .				
Module Name	Content	No. of Hrs				
Module I	Introduction to Web Development	10				
Module II	Creation of Static Web Pages using HTML/CSS 10					
Module III	Creation of Page Using Java Script	10				
	Besides these additional experiments can be included to give hands on experience to students.					
	Total Hours 30					

	SET/CS/SC/C211 Basics of Python Lab					
(Skill Enhancement Course)						
Course	1. To make the student learn about Python programming language.					
Objective:	2. To develop basic programs using primitive data structures.					
Course Outcome:	After Completion of this course the student would be able to know about the basic Python programming.					
Module Name	Content	No. of Hrs				
Module I	Install Python and write your first program	5				
Module II	Describe the basics of the Python programming language	10				
Module III	Use variables to store, retrieve and calculate information, Utilize core programming tools such as functions and loops	15				
	Besides these additional experiments can be included to give hands on experience to students.					
	Total Hours 30					

Semester III

S. No.	Category	Course Code	Course Code and Title	L	Т	Р	Contact Hrs./Week	Credits
1	Basic Science/Multidisciplinary	SET/AH/BT/C301	Mathematics III	3	1	-	4	4
2	Core Subjects		Computer Based Numerical & Statistical Techniques	3	1	-	4	4
3		SET/CS/BT/C304	Data Structures Using C	3	1	-	4	4
4		SET/CS/BT/C305	Discrete Structures	3	1	-	4	4
5	Interdisciplinary Subject	SET/EC/BT/C303	Digital Electronics	3	1		4	4
б	Core Subjects Based		Computer Based Numerical & Statistical Techniques lab	-		1	3	1
7	Labs	SET/CS/BT/C307	Digital Electronics Lab			1	3	1
8	Extracurricular Courses/CC		*Additional Multidisciplinary Skill course (AMSC): Any one of the following 1. Nursery training course 2. Basic Yoga practices 3.Physical education/sports management 4. Folk and culture 5. Indian traditional music	2	-	_	2	2
9	Skill Course		Data Structures Using C Lab	-	-	1	4	2
Total			17	5	3	32	26	

* Compulsory for all U.G. students, to be prepared by University.

	SET/CS/BT/C301 MATHEMATICS- III	
Course Objective	 To introduce students to the fundamental concepts of ordinary and partial and their applications in engineering. To provide students with various solution methods for ordinary differential first-order and linear equations of nth order with constant coefficients. To familiarize students with partial differential equations of various type hyperbolic) and their classifications. To teach students numerical methods for solving differential equations and techniques. To introduce students to the theory of complex variables, including analytic integral theorem, and residue theorem. 	equations, including s (parabolic, elliptic, numerical integration
	 Students will be able to classify and solve ordinary differential econders and types, including homogeneous and non-homogeneous e Students will gain proficiency in solving linear partial different constant coefficients and understand the physical significance engineering problems. Students will develop the ability to use numerical methods to approdifferential equations and perform numerical integration using Simpson's rules. Students will demonstrate an understanding of complex variables functions, Cauchy-Riemann equations, and Taylor/Laurent series explicitly to solve engineering evaluating integrals using the residue theorem and analy poles and singularities. 	quations. ial equations with e of solutions in ximate solutions of g trapezoidal and , including analytic pansions. ;ineering problems,
Module Name	Content	No. of Hrs.
Equations	Introduction to order, degree and arbitrary constants, solution methods for differential equations of first order, linear differential equations of n th order with constant coefficient, complimentary functions and particular integrals, Homogeneous differential equations, Cauchy's and Euler's equations, Method of variation of parameters, equations of the form, applications to engineering problems. $y'' = f(y)$	12
Differential Equations	Linear PDE with constant coefficients of 2nd order and their classifications, Initial and boundary value problems, PDE of parabolic, elliptic and hyperbolic type. Separation of variables method for solving PDE, heat equations, wave equations and Laplace equations.	10
Methods	Direct and iterative methods to solve of linear algebraic equations, numerical integration, integration by trapezoidal and Simpson's rules.	08
Complex	Analytic functions; Cauchy-Riemann equations; Harmonic	12
	functions, Cauchy"s integral theorem and integral formula; sequences, series, convergence tests, Taylor and Laurent series, poles and singularity of zeros, residue theorem.	

	1. Naros	R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mathematics", a Publications,
Textbooks	2.	B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers,
	3.	H K Das, "Advanced Engineering Mathematics", S Chand,
	4.	Erwin Kreyszig, "Advanced Engineering Mathematics".

SET/C	S/BT/C302 COMPUTER BASED NUMERICAL & STATIS TECHNIQUES	TICAL
Course Objective	 To familiarize students with errors that occur in numerical computatio with the necessary mathematical preliminaries for error analysis. To introduce students to various methods for solving algebraic and tra including bisection method, Newton's-Raphson method, and interpolat To teach students about interpolation methods, curve fitting procedure interpolation, and approximation of functions. To provide students with numerical techniques for integration and diff trapezoidal rule, Simpson's rules, and Gaussian formula. To introduce students to statistical computation techniques, including least square fit, and statistical control methods. 	nscendental equations, tion techniques. ss, cubic spline Perentiation, including
Course Outcome	 Recognize the error in the number generated by the solution. Compute solution of algebraic and transcendental equation by numeric Bisection method and Newton Rapshon method. Apply method of interpolation and extrapolation for prediction. Recognize elements and variable in statistics and summarize qualitative data. Calculate mean, median and mode for individual series. Outline properties of correlation and compute Karl-Pearson"s coefficient 	ve and quantitative
Module Name	Content No. of Hrs.	
Errors in numerical computations	Errors in numerical computations, mathematical preliminaries, errors and their 6 analysis, machine computations, computer software	
Algebraic & Transcendental Equation	Bisection method, iteration method, method of false position, rate of convergence, method for complex root, Muller's method, quotient difference method, Newton's-Raphson methods.	6
Interpolation	roduction, errors in polynomial interpolation, finite difference, decision of errors, Newton's formulae for interpolation, Guass, Stirling, Bessel's, Everett's formulae, interpolation by unevenly spaced points, Lagrange interpolation formula, divided difference, Newton's general interpolation, formula. Curve Fitting.	10
Cubic Spline & Approximation	Introduction, method of least square curve fitting procedures, fitting a straight line, curve fitting by sum of exponentials, data fitting with cubic splines, approximation of functions	8
Numerical Integration & Differentiation	Introduction, numerical differentiation, numerical integration, trapezoidal rule, Simpson 1/3 rule, Simpson 3/8 rule, Booles and Weddles rule, Euler- Maclariaun formula, Gaussian formula, numerical evaluation of singular integrals.	6
Statistical Computation	Frequency chart, regression analysis, least square fit, linear & non-linear regression, multiple regression, statistical control methods.	6
	Total No. of H	ours 42
Textbooks	 Sashtry : Introductory Method of Numerical Analysis, PHI 2. 2. Balaguruswamy : Numerical Methods, TMH 	
References	1. Jain, Iyengar, Jain : Numerical Methods for Scientific& Engg. Computation, New Ag 2.Gerald & Wheatley : Applied Numerical Analysis, Addison Wesley	ge

SI	ET/CS/BT/C304 Data Structures Using C	
Course Objective Course Outcome	 To impart the basic concepts of data structures and algorithms. To understand concepts about searching and sorting techniques. To understand basic concepts about stacks, queues, lists, and trees, etc. To understanding about writing algorithms and step by step approach in so problems with the help of fundamental data structures Ability to analyze algorithms and algorithm correctness. Ability to summarize searching and sorting techniques Ability to describe stack, queue and linked list operation. Ability to have knowledge of tree and graphs concepts. 	olving
Module Name	Content	No. of Hrs.
Elementary Data Organization	Introduction to Field, Record, Data and Elementary Data Organization, Basic operations, Algorithm Complexity and Time-Space trade-off.	6
Arrays and Linked list	Representation and Analysis, Single and Multidimensional Arrays, address calculation, application of arrays, String in C, Array as Parameters, Ordered List, Sparse Matrices, Representation and Implementation of Singly Linked Lists, Two-way Header List, Traversing and Searching of Linked List, Overflow and Underflow, Insertion and deletion to/from Linked Lists, Insertion and deletion Algorithms, Doubly linked list, Linked List in Array, Polynomial representation and addition, Garbage Collection and Compaction.	12
Stacks and Queues	Array Representation of Stack, Linked Representation of Stack, Operations Associated with Stacks, Application of stack: Conversion of Infix to Prefix and Postfix Expressions, Evaluation of postfix expression using stack. Array and linked representation and implementation of queues, Create, Add, Delete, Full and Empty, Circular queues, D-queues and Priority Queues.	8
Trees	General Trees Binary Trees, Binary tree representation, algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees, Traversing, Threaded Binary trees, Huffman algorithm, Binary Search Tree, Insertion and Deletion in BST, AVL Trees, B-trees.	8
Searching and Sorting	Sequential search, binary search, comparison and analysis, Insertion Sort, Bubble Sorting, Quick Sort, Two Way Merge Sort, Heap Sort, Sorting on Different Keys, Complexity of Search Algorithm.	8
	Total No. of Hours	42
Textbooks References	 Seymour Lipschutz, "Data Structures", TMH. R. Kruse etal, "Data Structures and Program Design in C", Pearson Education Asia A. M. Tenenbaum, "Data Structures using C & C++", Prentice-Hall of India Pv Delhi. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. 	

	SET/CS/BT/C305 Discrete Structure
Course Objective	1. To introduce students to the foundational concepts of set theory, including countable and uncountable sets, relations, functions, and mathematical induction.
	2. To familiarize students with algebraic structures such as semigroups, monoids, groups, rings, and fields, along with their properties and applications.
	3. To teach students about posets (partially ordered sets), Hasse diagrams, lattices, and their properties, including bounded and complemented lattices.
	4. To provide students with a solid understanding of propositional and first-order logic, truth tables, logical operations, tautologies, contradictions, and algebra of propositions.
	5. To enable students to apply permutation and combination techniques, recurrence relations, generating functions, and probabilistic methods in problem-solving contexts.
Course Outcome	 Students will be able to demonstrate proficiency in manipulating sets, relations, and functions, and apply mathematical induction and the pigeonhole principle to prove statements and solve problems.
	 Students will gain a thorough understanding of algebraic structures, including groups, rings, and fields, and their properties, and be able to apply them in various mathematical contexts.

	 Students will be able to construct Hasse diagrams for partially ordered sets, an properties, and understand the concepts of bounded and complemented lattices. Students will develop logical reasoning skills, including constructing truth tables logical propositions, and understanding logical implications and equivalences. Students will acquire the ability to solve problems related to permutations, correcurrence relations, and generating functions, and apply probabilistic methods problems. 	, evaluating mbinations,
Module Name	Content	of Hrs
Set Theory	Countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets Relation: Definition, types of relation, composition of relations, Pictorial representation of m relation, equivalence relation, partial ordering relation, Type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, mathematical induction (simple and strong), pigeonhole principle, prove by contradiction.	12
Algebraic Structures	Properties, Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, Rings and Fields.	6
Posets, Hasse Diagram and Lattices	Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices.	6
Propositional Logic	Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Universal and existential quantifiers.	10
Permutation &	Recurrence Relation, Generating function., Permutation & Combination, Probabilistic	8
Combination	Permutation & Combination.	
	Total No. of Hours	42
Textbooks	 Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill. 3rd edition Trembley, J.P & R. Manohar, "Discrete Mathematical Structure with Application to Science", McGraw Hill, Reprint 2010 	Computer
References	 Discrete Mathematics & its application with combinatory and graph theory, K.H.Ros (6th ed). C.L.Liu, "Discrete Mathematics" TMH. 	en, TMH

	SET/EC/BT/C303 DIGITAL ELECTRONIC	CS
Course Objective	 To revise and extend the basic knowledge of number system and logic gates. Simplificati complex Boolean expression using K-map. To understand the combinational and sequential logic circuits. To get the basic knowledge of logic families and semiconductor memories. 	on of the
Course Outcomes	 Student should be able to: Describe and demonstrate the use of digital test equipments and its operating characterist Identify and describe the combinational and sequential logic circuits. Understand the different memory devices. 	ics.
Module Name	Content	No. of Hrs.
Introduction	Positional number system; Binary, octal and hexadecimal number systems; Methods of base conversions; Binary, octal and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers. Definition and specification of combination logic; Truth table; Basic logic operation and logic gates; Binary coded decimal codes; Gray codes.	6
Boolean Algebra and Switching Functions	Basic postulates and fundamental theorems of Boolean algebra; Standard representation of logic functions - SOP and POS forms; Simplification of switching functions - K-map.	4

Logic Fami	ilies	Diode, BJT and MOSFET as a switch. Introduction to different logic families; Electrical characteristics of logic gates – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power-delay product; circuit description and operation; RTL; DTL, HTL, TTL and sub families, Brief idea of ECL, CMOS BI-CMOS.	10
Combination Logic	nal	Arithmetic modules: adders, subtractors and ALU; Design examples. Decoders, encoders, multiplexers and de-multiplexers; Parity circuits and comparators.	6
Sequential Logic		Basic sequential circuits- latches and flip-flops: SR-latch, D-latch, D flip-flop, JK flipflop, T flip-flop and their inter-conversions; Timing hazards and races; Meta-stability; Analysis of state machines using D flip-flops and JK flip-flops; Definition of state machines, synchronous sequential logic, shift register, counters-ripple and mod counters.	12
Semiconduct Memories	tor	RAM, ROM, Content Addressable Memory, Charge Coupled Device Memory. PLAs, PALs and their applications; Sequential PLDs and their applications.	4
		Total No. of Hours	42
Textbooks	1	. M. Morris Mano, "Digital Design".	
References	 Taub, Schilieng, "Digital Integrated Electronics". Anad Kumar, "Digital principles and application". John F Wakerly, "Digital Design: Principles and Practices", PrenticeThomas L. Floyd, "Digital Fundamentals", Pearson/ Prentice Hall. Hall. Ronald J. Tocci, "Digital Systems: Principles and Applications", Pearson/ Prentice Hall. 		tal
	6	. Charles Roth, "Fundamentals of Logic Design", Jaico Publishing House.	

SET/CS/BT/C306 COMPUTER BASED NUMERICAL & STATISTICAL		TATISTICAL	
	TECHNIQUES LAB		
Course Objective	 Apply Bessel's, Newton's, Stirling's, and Lagrange's methods for problems. Implement the method of least square curve fitting. Implement numerical differentiation using trapezoidal and Simp 	Implement numerical methods for solving equations and analyze root convergence rates. Apply Bessel's, Newton's, Stirling's, and Lagrange's methods for solving mathematical problems. Implement the method of least square curve fitting. Implement numerical differentiation using trapezoidal and Simpson 3/8 rules. Analyze data using frequency chart, regression analysis, linear and polynomial fits.	
Course Outcome Module Name	 Implement polynomial interpolation and analyze errors. Apply numerical methods for solving algebraic and transcendental equations and analyze root convergence rates. Apply various methods (Bessel's, Newton's, Stirling's, Lagrange's) to solve mathematical problems. Implement the method of least square curve fitting. Implement numerical differentiation using trapezoidal and Simpson 3/8 rules. Analyze data using frequency chart, regression analysis, linear and polynomial fits. 		
iviouale i (ante	Content		
Module I	Write a Program to deduce errors involved in polynomial interpolation.	6	
Module II	Write a Program for algebraic and transcendental equations using bisection, iterative, method of false position, also give rate of conversions of roots in tabular form for each of these methods.	6	
Module III	Write a Program to implement Bessel"s functions, Newton"s, Stirling"s, Lagrange"s.	6	
Module IV	Write a Program to implement method of least square curve fitting.	6	
Module V	Write a Program to Implement numerical differential using trapezoidal, Simpson 3/8 rules.	6	
Module VI	Write a Program to show frequency chart, regression analysis, linear square fit and polynomial fit.	6	

Total Hours 36		
	Total Hours	36

	SET/CS/BT/C307 DIGITAL ELECTRONICS	S LAB
Module Name	Content	No. of Hrs.
Experiments	 Combinational Logic design using basic gates (Code Converters, Comparators). Combinational Logic design using decoders and MUXs. Arithmetic circuits - Half and full adders and subtractors. Arithmetic circuits - design using adder ICs, BCD adder. Flip flop circuit (RS latch, JK & master slave) using basic gates. Asynchronous Counters. Synchronous counters, Johnson & Ring counters. Sequential Circuit designs (sequence detector circuit). Transfer Characteristics , Measurement of Sinking and Sourcing currents etc. of TTL gates. 	10x2
Model Sim Simulations	Writing and simulating programs for adder, decoder, multiplexer, de-multiplexer, up/down counter, universal shift register, Sequence Detector etc.	4x2
	Total No. of Hours	28

	SET/CS/SC/C308 DATA STRUCTURES LAB	
Course Objective	 Implement Stack, Queue, and Circular Queue using arrays and 1 Implement Tree, Binary Tree, Tree Traversal, Binary Search Trainsertion and deletion. Implement popular Searching and Sorting Algorithms. Develop problem-solving skills using data structures. 	
Course Outcome	 Develop proficiency in implementing data structures. Gain practical experience in using arrays and lists to implement S Queue. Understand the concepts of Tree, Binary Tree, and Binary S implement them efficiently. Learn various searching and sorting algorithms and gain experier 	earch Tree, and learn to
Module Name	Content	No. of Hrs
Module I	Array implementation of Stack, Queue, Circular Queue.	9
Module II	List implementation of Stack, Queue, Circular Queue.	9
Module III	Implementation of Tree, Binary Tree, Tree Traversal, Binary Search Tree, Insertion and Deletion in BST.	9
Module IV	Implementation of Searching and Sorting Algorithms.	9
	Total Hours	36

Semester IV

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/C401	Object Oriented Programming using C++	3	1	-	4	4
2	Core Subjects	SET/CS/BT/C402	Operating System	3	1	-	4	4
3		SET/CS/BT/C403	Computer Organization and Architecture	3	1	-	4	4
4		SET/CS/BT/C405	Theory of Computation	3	1	-	4	4
5	Interdisciplinary Subject	SET/CS/BT/C404	Data Communication and Computer Network	3	1		4	4
6	Core Subjects	SET/CS/BT/C406	Object Oriented Programming using C++ Lab	-		1	3	1
7	Based Labs	SET/CS/BT/C407	Operating System Lab			1	3	1
8	Indian Knowledge System-I (IKS- 2)	VAC-3	Indian Knowledge System*	2	-	-	2	2
9	Skill Course	SET/CS/SC/C408	Mini Project (Based on C/C++)			1	4	2
		Total		17	5	3	32	26

* Compulsory for all U.G. students, to be prepared by University.

SET/CS/BT/C401 O	BJECT ORIENTED PROGRAMMING USING C++	
Course Objective	1. Introduces Object Oriented Programming concepts using the C++ language.	2.
	Introduces the principles of data abstraction, inheritance and polymorphism	
	3. Introduces the principles of virtual functions and polymorphism.	
	4. Introduces handling formatted I/O and unformatted I/O.	
	5. Introduces exception handling.	
Course Outcome	1. Able to develop programs with reusability.	
	2. Develop programs for file handling.	
	3. Handle exceptions in programming.	
	4. Develop applications for a range of problems using object-oriented program	
Module Name	Content	No. of Hrs.
	Object Oriented Programming Paradigm, Basic concepts of OOP,	
	Objects, Classes, Data abstraction and Encapsulation, Inheritance,	10
Fundamental	Polymorphism, Dynamic binding, Message passing, Applications of OOP.	
Concept	Introduction to C++, structure of C++ Program. Tokens, Keywords,	
_	Identifiers and Constants, Data Types, Declaration and Dynamic	
	Initialization of Variables, Reference Variables, Operators in C++,	
	Expressions and their types, Control	
	Structure, Functions in C++, Function Overloading.	
	C Structure Revisited, Specifying a class, Defining Member functions,	8
	Making an Outside function inline, nesting of member function, Private	
Classes,	member function, arrays within class, Memory allocation for objects, static	
Objects and	data members and member functions, Arrays of objects, Object as a function	
Constructors	arguments, Friend function, Returning objects, pointers to members local	
	classes. Constructors, Parameterized constructors, Multiple constructors in a	
	class, constructors with default arguments, dynamic initialization of objects,	
	copy constructor, dynamic constructors, constructing 2-D arrays, Destructors.	
Inheritance	Derived class declaration, forms of inheritance, inheritance and member	8
	accessibility, constructors and destructors in derived classes, constructors	
	invocation and data members initialization, overloaded member functions,	
	types of inheritance.	
	Defining operator overloading, Overloading Unary and Binary operators,	6
Polymorphism	Operator Overloading using friends, Manipulation of strings using operators,	
	Rules for overloading operators. Need for virtual functions,	
	pointer to derived class objects, array of pointers to base class objects, pure	
	virtual functions, virtual destructor, Concatenation of strings.	
Streams computation &	Predefined console streams, hierarchy of console stream classes, unformatted	10
Exception Handling	and formatted console I/O operations, manipulators, Files: Hierarchy of file	
	stream classes, opening and closing, testing for errors, modes, pointers and	
	their manipulators, sequential access. Exceptions and Exception handling	
	mechanism, throwing and catching mechanism, Rethrowing an exception, list	
	of exceptions, handling uncaught exceptions.	
	Total No. of Hours	42
Textbooks	1. Balagurusamy "Object Oriented Programming with C++", TMH	
References	1. Budd,"Object Oriented Programming ", Addison Wesley.	
	2. Mastering C++ K.R Venugopal Rajkumar, TMH.	
	3. C++ Primer, "Lip man and Lajole", Addison Wesley.	

	SET/CS/BT/C402 OPERATING SYSTEM						
Course Objective	 To make aware of different types of Operating System and their services. To learn different process scheduling algorithms and synchronization techniques to achi performance of a computer system. To know virtual memory concepts. 						
Course Outcome	 Understands the different services provided by Operating System at different level. They learn real life applications of Operating System in every field. Understands the use of different process scheduling algorithm and synchronization technideadlock. They will learn different memory management techniques like paging, segmentation and 						
Module Name	Content	No. of Hrs.					
Fundamental Concept	Operating System and Function, Evolution of Operating System, Batch, Interactive, Time Sharing and Real Time System, System Protection. Operating System Structure: System Components, System Structure, Operating System Services.	6					
Concurrent Processes	Process Concept, Principle of Concurrency, Producer / Consumer Problem, Critical Section, Problem, Semaphores, Classical Problems in Concurrency, Inter Processes Communication, Process Generation, Process Scheduling. CPU Scheduling: Scheduling Concept, Performance Criteria Scheduling Algorithm, Evolution, Multiprocessor Scheduling.	8					
Deadlock	System Model, Deadlock Characterization, Prevention, Avoidance and Detection, Recovery From Deadlock Combined Approach.	6					
Memory Management	Basic Machine, Resident Monitor, Multiprogramming with Fixed Partition, Multiprogramming With Variable Partition, Multiple Base Register, Paging, Segmentation, Paged Segmentation, Virtual Memory Concept, Demand Paging, Performance, Paged Replaced Algorithm, Allocation of Frames, Thrashing, Cache Memory Organization, Impact on Performance.	8					
I/O Management & Disk Scheduling	I/O Devices and The Organization of I/O Function, I/O Buffering, Disk I/O, Performance criteria in scheduling algorithms, Concept of FCFS scheduling algorithm, Concept of priority scheduling algorithm like SJF, Concept of non- preemptive and preemptive algorithms, Concept of roundrobin scheduling algorithm, , Concept of multi-level queues, feedback queues. Operating System Design Issues. File System: Basic File System, Access Control Verification, Logical File System, and Physical File System File-System Interface: File Concept, Access Methods, Directory Structure, Protection, and Consistency Semantics File-System Implementation: File-System Structure, Allocation Methods, Free- Space Management, Directory Implementation, Efficiency and Performance, Recovery.	10					
Unix Operating System	Development Of Unix, Role & Function Of Kernel, System Calls, Elementary unix command & Shell Programming, Directory Structure, System Administration, ,Case study: UNIX Operating System	4					
Text Books	Total No. of Hours 1. Tannenbaum, "Operating System Design and Implementation", PHI.	42					

References	1. Milenekovie, "Operating System Concept", McGraw Hill.
	2. Petersons, "Operating Systems", Addision Wesley.
	3. Dietal, "An Introduction to Operating System", Addision Wesley.
	4. Gary Nutt, "Operating System, A Modern Perspective", Addision Wesley.

SET/	CS/BT/C403 Computer Organization and Architecture						
Course Objective	1. Discuss the basic concepts and structure of computers.						
	2. Understand concepts of register transfer logic and arithmetic operations.						
	3. Explain different types of addressing modes and memory organization.						
	4. Learn the different types of serial communication techniques.						
0.01	5. Summarize the Instruction execution stages.						
Course Outcome	1. Understand the theory and architecture of central processing unit.						
	2. Analyze some of the design issues in terms of speed, technology, cost, performance.						
	3. Design a simple CPU with applying the theory concepts.						
	 Use appropriate tools to design verify and test the CPU architecture. Learn the concepts of parallel processing, pipelining and interprocessor com 	munication					
	5. Learn the concepts of parallel processing, pipelining and interprocessor com6. Understand the architecture and functionality of central processing unit.	mumeation.					
	 Challestand the architecture and functionality of central processing unit. Exemplify in a better way the I/O and memory organization. 						
	8. Define different number systems, binary addition and subtraction, 2"s complete systems with this approximation	lement					
	representation and operations with this representation.						
Module Name	Content	No. of Hrs.					
Fundamental Concepts	CPU, memory, input-output subsystems, control unit. Instruction set architecture of	10					
i unumentar concepts	a CPU–registers, instruction execution cycle, Performing of arithmetic or logical	10					
	operations, Fetching a word from memory, storing a word in memory, Bus and						
	Memory Transfers, Bus Architecture, Arithmetic Algorithms (addition, subtraction,						
	Booth Multiplication), IEEE standard for Floating point numbers. General register						
	organization, Register Transfers, Register Transfer Language.						
Control Design	Execution of a complete instruction, Multiple-Bus organization, Hardwired Control,	8					
	Micro programmed control, Microinstruction, address sequencing, Microinstruction						
	with Next-address field, Prefetching Microinstruction.						
Processor Design	Processor Organization: Stack organization, Addressing mode, Instruction format, Data	8					
	transfer & manipulations, Program Control, Reduced Instruction Set Computer.						
	Assembly levels programs, programming techniques such as looping, counting and indexing addressing modes, data transfer instructions, arithmetic and logic operations.						
	indexing addressing modes, data transfer instructions, artificite and logic operations.						
Input-Output	I/O Interface, Modes of transfer, Interrupts & Interrupt handling, Direct Memory access,	. 6					
Organization	Input- Output processor, Serial Communication.	, 0					
0. 9							
Memory Organization	Memory Hierarchy, Main Memory (RAM and ROM Chips), Auxiliary memory, Cache	e 6					
Sector y organization	memory, Virtual Memory, Memory management hardware.						
Pipelining and Parallel	Basic concepts of pipelining, throughput and speedup, pipeline hazards. Introduction to	9 4					
Processors	parallel processors, Concurrent access to memory and cache coherency.						
		44					
Touthooka	Total No. of Hours	44					
Textbooks	1. Morris Mano, "Digital Design" 2. Computer System Architecture M. Mano(PHI)						
References	 Computer System Architecture, M. Mano(PHI) Computer Organization, Vravice, Zaky & Hamacher (TMH Publication) 2. 						
Kelerences	Structured Computer Organization, Tannenbaum(PHI)						
	3. Computer Organization, Stallings(PHI).						
	5. computer organization, builings(111).						

SET/C	CS/BT/C404 Theory Of Computation						
Course Objective	 Understand basic properties of formal languages and formal grammars. Understand basic properties of deterministic and nondeterministic finite automata. Understand the relation between types of languages and types of finite automata. Understanding the Context free languages and grammars, and also Normalising CFG. Understanding the minimization of deterministic and nondeterministic finite automata. Understand basic properties of Turing machines and computing with Turing machines. Understand the concept of Pushdown automata and its application. Know the concepts of tractability and decidability, the concepts of NP-completeness and NP-hard problem. Understand the challenges for Theoretical Computer Science and its contribution to other sciences. 						
Course Outcome	 Knowledge Acquire a full understanding and mentality of Automata Theory as the basis of all computer science languages design - Have a clear understanding of the Automata theory concepts such as RE's, DFA's, NFA's, Turing machines, Grammar, halting problem, computability and complexity. Cognitive skills (thinking and analysis) Be able to design FAs, NFAs, Grammars, languages modelling, small compilers basics - Be able to design sample automata - Be able to minimize FA's and Grammars of Context Free Languages. Professional Skill - Perceive the power and limitation of a computer - Solve the problems using formal language. Attitude- Develop a view on the importance of computational theory. 						
Module Name	Content	No. of Hrs.					
Finite Automata	Introduction to defining language, Kleene closures, Arithmetic expressions, defining grammar, Chomsky hierarchy, Finite Automata (FA), Transition graph, generalized transition graph. Nondeterministic finite Automata (NFA), Deterministic finite Automata (DFA), Construction of DFA from NFA and optimization, FA with output: Moore machine, Mealy machine and Equivalence, Applications and Limitation of FA, Arden Theorem, Pumping Lemma for regular expressions, Myhill - Nerode theorem.	12					
Context free grammar	Ambiguity, Simplification of CFGs, Normal forms for CFGs, Pumping lemma for CFLs, Decidability of CFGs, Ambiguous to Unambiguous CFG.	8					
Push Down Automata	Description and definition, Working of PDA, Acceptance of a string by PDA, PDA and CFG, Introduction to auxiliary PDA and Two stack PDA.	10					
Turing Machines	Basic model, definition and representation, Language acceptance by TM, TM and Type – 0 grammar, Halting problem of TM, Modifications in TM, Universal TM, Properties of recursive and recursively enumerable languages, unsolvable decision problem, undecidability of Post correspondence problem, Church''s Thesis, Recursive function theory, Godel Numbering.	10					
	Total No. of Hours	42					
Text Books	1. K.L.P. Mishra and N. Chandrasekaran, "Theory of Computer Science (and Computation)", PHI	Automata, Languages					
References 1. Hopcroft, Ullman, "Introduction to Automata Theory, Language and Computation", NerosaPublishing House 2. Cohen D. I. A., "Introduction to Computer theory", John Wiley & Sons							

SET/CS/BT/0	C405 Data Communication and Computer Networks	
Course Objective	er networking area. or entry Advanced	
Course Outcome	 Understand the concepts of Data Communication. Study the functions of OSI Layers. Familiarize with the Transmission Media, Flow Control and Error Detection & Understand fundamental concepts in Routing, Addressing & working of Transp Gain familiarity with common networking & Application Protocols. Understand Wireless LANs & Wireless Sensor Networks Operation. 	
Module Name	Content	No. of Hrs.
Introduction	Introduction to Computer Networking: Use, advantage, structure of the communications network topologies the telephone network, analog to digital communication. Network classes, Repeaters Hub, Bridges, Switches, Routers, Gateways B-routers.	6
Data Communications	Fundamentals: Layered Network Architecture, Communication Between Analog Computers & Terminals Layered Protocols, Network & The OSI Models, Traffic control and accountability wide area and local area networks, connection oriented and connectionless networks, classification of communication protocols polling/selection systems, design problems, communication between layers, ISO standard. Transmission Media: Guided, Unguided; Transmission Impairments and Channel Capacity; Transmission of Digital Data, Interfaces-DTE-DCE, MODEM, The telephone network system and DSL technology;	8
Data link layer:	Introduction, Framing, and Error – Detection and Correction – Parity – LRC – CRC Hamming code, Flow and Error Control, Noiseless Channels, Noisy Channels, HDLC, Medium Access sub layer: ALOHA, CSMA/CD, IEEE LAN Standards Random access, Controlled access, Channelization. Data Link Protocols: Synchronous, Asynchronous Protocols, Point-to-Point Protocol(PPP) Switching Communication Networks: Circuit switching; Packet switching; Routing in packet switched networks; X.25; Frame Relay, ATM, ISDN.	10
Network Layer	Network Layer Design Issues, Routing Algorithms, Network Layer Protocols IP Addressing, CIDR & NAT, IP layer protocols (ICMP, ARP, RARP, DHCP, and BOOTP) and IPv6, TCP/IP and internetworking, Network Devices.	10
Transport layer and Application layer		8
Total No. of Hours		42
Text Books	 Data communication & Networking by Bahrouz Forouzan. Stallings, W. (2010), Data and Computer Communications, Pearson. 	
References	 2. Stanligs, W. (2010), Data and Computer Communications, Fearson. 1. J. Kurose, K. Ross, Computer Networking: A Top - Down Approach, Pears 2. Tannanbaum, A.S.: Computer Network, PHI 3. Black : Computer Network; Protocols, Standards and Interface PHI 	son

SET/CS/	BT/C406 OBJECT ORIENTED PROGRAMMING USING	C++ LAB					
Course Objective	 To introduce students to the fundamental programming constructs and techniques. To provide hands-on experience in implementing programs using these constructs and techniques. To develop the ability to design and implement programs that solve practical problems. To develop the ability to use programming concepts in the context of object-oriented programming (OOP). To provide students with a foundation for further study in computer science and related fields. 						
Course Outcome	 Students will demonstrate proficiency in using input and output statements effectively. Students will be able to implement control statements to manage the flow of programs. Students will develop the ability to define and use functions to modularize code. Students will demonstrate competency in implementing arrays to store and manipulate data. Students will be capable of implementing classes along with constructors and destructors for object-oriented programming. Students will gain experience in performing file operations such as reading from and writing to files. Students will understand and apply object-oriented programming concepts like inheritance, 						
Module Name	polymorphism, encapsulation, friend functions, and static functions effect Content	No. of Hrs.					
Experiments / Spice Simulations	 Implementation of input and output statements. Implementation of control statements. Implementation of functions. Implementation of array Implementation of Classes and Constructor and Destructor. Implementation of files. Implementation of OOP"s Concepts (Inheritance, Polymorphism, Encapsulation, Friend and Static Functions) 	3x12					
	Total No. of Hours	36					

2. 3. Course Objective 4. 5. 6. 7. Course Outcome 8. 9. 10 11	environments.							
9. 10 11	 To provide hands-on experience in using the Bourne Shell commands and constructs for file management and scripting. To develop the ability to write moderately complex Shell scripts to automate tasks and solve practical problems. 							
13	 8. Students will demonstrate proficiency in using basic Bourne Shell commands such as cat, grep, ls, ps, chmod, finger, etc. 9. Students will be able to utilize Bourne Shell constructs like if-then, if-then-else, for, while, until, and case for program control. 10. Students will gain an understanding of tracing mechanisms, shell variables, command substitution, and other advanced shell scripting concepts. 11. Students will demonstrate the ability to perform file operations and test conditions on numeric values, file types, and character strings within Shell scripts. 12. Students will develop the skill to write moderately complex Shell scripts to automate tasks. 13. Students will create a customized ".profile" script to tailor their user environment according to their preferences. 15. Students will be able to compile and execute C programs in a UNIX environment, gaining familiarity with the compilation and execution process. 							
Module Name	Content	No. of Hrs.						
Module 1 1 2 3 4 5 6 7	 Demonstrate how to use the following Bourne Shell commands: cat, grep, ls ,more, ps, chmod, finger etc. Use the following Bourne Shell constructs: test, if then, if then else, if then el if, for, while, until, and case. Learn tracing mechanisms (for debugging), user variables, Bourne Shell variables, read-only variables, positional parameters, reading 	3x12						
8	 input to a Bourne Shell script, command substitution, comments, and exporting variables. In addition, test on numeric values, test on file type, and test on character strings are covered. Copy, move, and delete files and directories. Write moderately complex Shell scripts. Make a Shell script executable Create a ".profile" script to customize the user environment Execute programs written in C under UNIX environment 							

	SET/CS/SC/C408 MINI PROJECT						
Course Objective	1. Upon completing Mini Project-1, students will have gained the ability to apply the programming concepts and techniques learned in C/C++ to solve real life problem.						
Course Outcome	 To provide students with an opportunity to apply the programming concepts and techniques learned in C/C++ to solve a practical problem. To develop the ability to design and implement a program using C/C++ to solve a real-world problem. To develop the ability to use software development tools and techniques, such as version control, debugging, and testing, in the context of a larger programming project. To provide students with the experience of working in a team to develop a program. To develop communication and presentation skills through the documentation and presentation of the Mini Project-1. To provide students with the opportunity to apply critical thinking and problemsolving skills to a real-world problem. To provide a foundation for further study and work in software development and programming. 						
Module Name	Content No. of Hrs.						
Module 1	Mini Project-1 shall be based on C/C++. 3x12						
	Total No. of Hours 36						

Semester V

S. No.	Category	Course Code	Course Title	L	Т	Ρ	Contact Hrs./Week	Credits
1		SET/CS/BT/C501	Database Management System	3	1	-	4	4
2	Core	SET/CS/BT/C502	Design and Analysis of Algorithms	3	1	-	4	4
3	Subjects	SET/CS/BT/C503	Software Engineering	3	1	-	4	4
4			Program Elective-1	3	1	-	4	4
5	Open Elective/Int er- disciplinary Subject		Open Elective-1	3	1		4	4
6	Core	SET/CS/BT/C504	Database Management System Lab	-		1	3	1
7	Based Labs	SET/CS/BT/C505	Design and Analysis of Algorithms Lab			1	3	1
8	Extracurricu lar Courses/Co mpulsory course	SET/CS/BT/M506	*Culture, traditions and moral values/ Yoga Practices	-	-	1	4	2
9	Skill Course	SET/CS/SC/C507	Python Lab			1	4	2
		Total	·	15	5	4	34	26

* University will prepare a course with focus on Indian/ Regional culture studies.

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	Ducara	SET/CS/BT/E501	Distributed Computing	3	1	-	4	4
2	Program Elective-1	SET/CS/BT/E502	Graph Theory	3	1	-	4	4
3		SET/CS/BT/E503	Principles of Programming Languages	3	1	-	4	4
1	Onon	SET/CS/BT/OE501	Java Programming	2	1	1	4	4
2	Open Elective-1	SET/CS/BT/OE502	Project Management	3	1		4	4
3		SET/CS/BT/OE503	Optimization Techniques	3	1		4	4

Elective and Open Elective Courses

Semester V

	DATABASE MANAGEMENT SYSTEM (SET/CS/BT/C501))
Course Objective	 Understand the fundamental differences between database systems and file systems, and grasp the key concepts of database system architecture. Master the Entity-Relationship Model, including concepts such as super keys, candidate keys, and primary keys, and learn to reduce ER diagrams to relational tables. Develop proficiency in database design and normalization techniques, including functional dependencies and normalization up to BCNF. Gain knowledge of transaction processing concepts, including serializability, recoverability, concurrency control techniques like locking and time stamping protocols, and an introduction to SQL for data manipulation and querying. 	
Course Outcome	 Understand the difference between database systems and file systems, and grasp ke like data models, schema, and data independence. Master entity-relationship modeling techniques, including super keys, primary keys reduction of ER diagrams to relational tables. Gain proficiency in database design and normalization, including functional dependence normalization forms up to BCNF. Develop skills in transaction processing, concurrency control, and SQL, enabling ef database management and application development. 	
Module Name	Content	No. of Hrs.
Fundamental Concepts	Database system Vs file system, Database system concepts and architecture, Data models schema and instances, data independence and data base languageand interfaces, Data definitions language, DML, Overall Database Structure.	8
Entity Relationship Model	ER model concepts, Concepts of Super Key, candidate key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, extended ER model, relationships of higher degree. Relational data Model and Language, integrity constraints, relational algebra, relational calculus, tuple And domain calculus.	6
Data Base Design & Normalization	Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependences, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design. Transaction.	10
Processing Concepts	Transaction system, Testing of serializability, Serializability of schedules, conflict & view serializable schedule, recoverability, Recovery from transaction failures, log based recovery, checkpoints, deadlock handling. Concurrency control, locking Techniques for concurrency control, Time stamping protocols for concurrency control, validation based protocol, Multiple.	12
Introduction to SQL	Characteristics of SQL. Advantage of SQL. SQL data types and literals. Types of SQL commands. SQL operators and their procedure. Tables, views and indexes. Queries and sub queries. Aggregate functions. Insert, update and delete operations. Joins, Unions, Intersection, Minus, Cursors in SQL Granularity, Multi version schemes, Recovery with concurrent transaction.	6
Tort Doal-	Total No. of Hours	42
Text Books References	 Korth, Silbertz, Sudarshan, "Database Concepts", McGraw Hill Elmasri, Navathe, "Fundamentals Of Database Systems", Addision Wes Date C.J. "An Introduction to Database System". Addision Wesley 	sley

	DESIGN AND ANALYSIS OF ALGORITHMS (SET/CS/BT/C50	2)
Course Objective	 Provide a comprehensive understanding of algorithm design and analysis, i of algorithmic efficiency and the application of the Master's Theorem. Explore various sorting algorithms such as Heap sort, Quick sort, and linea methods, along with order statistics. Delve into advanced data structures like Red-Black Trees, B-Trees, and he augmentation for specific purposes. Cover dynamic programming, greedy algorithms, and backtracking technic solving, with an emphasis on algorithmic design paradigms. Study graph algorithms including minimum spanning trees, shortest paths, selected advanced topics like randomized algorithms and NP completeness 	ar time sorting aps, including their ques for problem- maximum flow, and
Course Outcome	 Demonstrate proficiency in analyzing algorithms and determining their eff growth functions and the Master's Theorem. Implement various sorting algorithms and understand their performance ch Design and implement advanced data structures such as Red-Black Trees a efficient data management. Apply dynamic programming, greedy algorithms, and backtracking technic of computational problems. Develop a strong understanding of graph algorithms and their applications problems, including optimization and network flow. 	aracteristics. and B-Trees for ques to solve a variety
Module Name	Content	No. of Hrs.
Fundamental	Algorithms, analysis of algorithms, Growth of Functions, Master's Theorem,	10
Concepts	Designing of Algorithms.	
Sorting and	Heap sort, Quick sort, Sorting in Linear time, Medians and Order Statistics.	10
order Statistics	Advanced Data Structure: Red-Black Trees, Augmenting Data Structure. B- Trees, Binomial Heaps, Fibonacci Heaps, Data Stricture for Disjoint Sets.	
Design and	Dynamic Programming, Greedy Algorithms, Amortized Analysis, Back	10
Analysis	Tracking.	
Graph	Elementary Graphs Algorithms, Minimum Spanning Trees, Single source	12
Algorithms	Shortest Paths, All-Pairs Shortest Paths, Maximum Flow, and Traveling	
	Salesman Problem. Selected Topics: Randomized Algorithms, String	
	Matching, NP Completeness, Approximation Algorithms.	
	Total No. of Hours	42
Textbooks	1. Coreman, Rivest, Lisserson, "Algorithm", PHI.	
References	2. Basse, "Computer Algorithms: Introduction to Design & Analysis", Addi	sion Wesley.
	3. Horowitz & Sahani, "Fundamental of Computer Algorithm", Galgotia.	

	SOFTWARE ENGINEERING (SET/CS/BT/C503)	
Course Objective	 Provide an understanding of software engineering processes, including s characteristics, and the historical context of the software crisis. Explore various software development models such as Waterfall, Spiral, Enhancement models, emphasizing their similarities and differences from engineering processes. Introduce software quality attributes, quality assurance techniques, verif processes, and frameworks for ensuring software quality. Cover the process of software requirement specifications and design, including various modeling Discuss software measurement and metrics, including size-oriented meas techniques, software testing strategies, and the importance of software measurement. 	and Iterative m conventional ication and validation cluding elicitation, g techniques. sures, estimation
Course Outcome	 Demonstrate knowledge of software engineering processes and their application in softwar development projects. Analyze and evaluate different software development models to determine their suitability various project requirements. Apply software quality assurance techniques to ensure the reliability, maintainability, and efficiency of software products. Design software systems using appropriate modeling techniques and design strategies, considering factors like modularity, coupling, and cohesion. Utilize software measurement and metrics to estimate project parameters accurately, condu effective software testing, and manage software maintenance activities efficiently. 	
Module Name	Content	No. of Hrs.
Introduction	Software Components, Software Characteristics, Software Crisis, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes, Software Quality Attributes. Software Quality Assurance, Verification and Validation, SQA Plans, Software Quality Frameworks. Software Development Models, Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models.	10
Software Requirement Specifications and Design	Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Information Modeling, Data Flow Diagrams, Entity Relationship Diagrams, Decision Tables, SRS Document. Architectural Design, Low Level Design: Modularization, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures. Design Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom- Up Design.	10
Software Measurement and Metrics	Various Size Oriented Measures, Halestead's Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures, Control Flow Graphs. Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO).	8
Software Testing	Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression Testing, Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up Testing Strategies, Structural Testing, Functional Testing, Test Data Suit Preparation, Alpha and Beta Testing of Products. Static Testing Strategies.	8
Software Maintenance	Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering. Software Configuration Management Activities. Change Control Process, Software Version Control, An Overview of CASE Tools.	6
Textbooks	Total No. of Hours 1. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age In	42 ternational
References	Publishers. 1. R. S. Pressman, Software Engineering: A Practitioners Approach, McC 2. Ian Sommerville, Software Engineering, Addison Wesley.	iraw Hill.

	Database Management System Lab (SET/CS/BT/C504)	
Lab Objective	 Familiarize students with Data Definition Language (DDL) and Data M. (DML) in SQL. Enable students to write SQL queries using logical operators, SQL opera Provide hands-on experience in relational algebra operations and queryi tables. Introduce students to sub queries, nested queries, and advanced SQL con programming. Equip students with practical skills in creating views, cursors, triggers, a database integrity constraints. 	ators, and functions. ng data from multiple ncepts like PL/SQL
Lab Outcome	 Proficiency in writing SQL queries for defining and manipulating database structures. Ability to construct SQL queries using logical and SQL operators for data retrieval and manipulation. Competence in performing relational algebra operations and querying data from multiple tables using various types of joins. Skill in writing complex SQL queries involving sub queries and nested queries to extract desired information from databases. Capability to create and manage database objects like views, cursors, triggers, and implement business rules using PL/SQL programming in Oracle databases. 	
Module Name	Content	No. of Hrs.
Module 1	 Write the queries for Data Definition and Data Manipulation language. Write SQL queries using Logical operators (=, <,>, etc.). Write SQL queries using SQL operators (Between AND, IN (List), Like,ISNULL and also with negating expressions). Write SQL query using character, number, date and group functions. Write SQL queries for Relational Algebra (UNION, INTERSECT, and MINUS, etc.). Write SQL queries for extracting data from more than one table (Equip- Join,Non-Equip-Join , Outer Join) Write SQL queries for sub queries, nested queries. Write programs by the use of PL/SQL. Concepts for ROLL BACK, COMMIT & CHECK POINTS. Create VIEWS, CURSORS, and TRIGGRS & write ASSERTIONS, Create FORMS and REPORTS. 	3x12
	Total No. of Hours	

1	DESIGN AND ANALYSIS OF ALGORITHMS LAB (SET/CS/BT	C/C505)
Lab Objective	 Introduce students to fundamental algorithmic design paradigms includi Greedy Method, Dynamic Programming, and Backtracking. Provide hands-on experience in implementing classic algorithms and sol problems using these paradigms. Familiarize students with common sorting and searching algorithms alor algorithms. Develop students' proficiency in analyzing algorithmic complexities and Encourage critical thinking and problem-solving skills through practical implementation and analysis. 	lving real-world ng with selection l performance.
Lab Outcome	 Mastery in implementing Divide and Conquer algorithms such as Quick Stassen's Matrix Multiplication. Competence in solving optimization problems using the Greedy Method Knapsack Problem and Minimal Spanning Trees. Proficiency in Dynamic Programming techniques to solve complex prob Knapsack Problem and Traveling Salesperson Problem. Ability to apply Backtracking algorithms to solve problems like the N-Q Graph Coloring Problem. Understanding and practical application of common sorting and searchir Insertion Sort, Heap Sort, Binary Search, and Sequential Search, along v for finding minimum/maximum elements and the Kth smallest element. 	l, including the plems like the 0/1 Queens Problem and ng algorithms like
Module Name	Content	No. of Hrs.
Module 1	 Divide and conquer method (quick sort, merge sort, Strassen's matrix multiplication), Greedy method (knapsack problem, job sequencing, optimal merge 	3x12
	 Sorting : Insertion sort, Heap sort, Bubble sort Sorting : Insertion sort, Heap sort, Bubble sort Searching : Sequential and Binary Search Selection : Minimum/ Maximum, Kth smallest element 	

	PYTHON LAB (SET/CS/SC/C506)		
Lab Objective	 Introduce students to Python programming language and its basic data ty Provide hands-on experience in solving problems using Python. Familiarize students with common programming tasks such as finding th counting occurrences of words in a string, and finding the largest numbe Develop students' proficiency in writing functions and solving problems Encourage students to apply built-in functions like map () to manipulate 	ne union of lists, ar among three numbers. using functions.	
Lab Outcome	 Understanding of Python syntax and basic data types including lists, strings, and numbers. Ability to write Python programs to solve various programming tasks such as finding the union of lists and counting word occurrences. Proficiency in solving simple arithmetic problems and performing comparisons in Python. Competence in writing and utilizing functions to solve problems, such as finding factorial or checking for equality between two lists. Capability to utilize built-in functions like map () effectively to perform operations on iterable objects in Python. 		
Module Name	Content	No. of Hrs.	
Module 1	 Introduction to python programming and python datatypes. Write a python program to find the union of two lists. Write a python program to count the occurrences of each word in a given string sentence. Write a python program to find largest number among three numbers. Write a python program to check whether the given string is palindrome or not. Write a python program to find factorial of a given number using functions. Write a Python function that takes two lists and returns true if they are equal otherwise false. Write a program for map () function to double all the items in the list. 	3x12	
	Total No. of Hours	36	

Program Elective Courses

	DISTRIBUTED SYSTEMS (SET/CS/BT/E501)	
Course Objective	 Provide a comprehensive understanding of architectural models and fundamental consystems, including theoretical foundations and limitations. Explore advanced topics such as distributed mutual exclusion, deadlock prevention, protocols, along with their applications. Cover distributed file systems, resource sharing challenges, and communication betwobjects, including remote procedure calls. Discuss distributed transactions, including concurrency control methods, atomic cortechniques for handling distributed deadlocks and transaction recovery. Introduce distributed algorithms for communication protocols, routing, packet switc algorithms. 	and agreement ween distributed nmit protocols, and
Course Outcome	 Demonstrate a deep understanding of architectural models and theoretical foundations underlying distributed systems. Analyze and evaluate different approaches to distributed mutual exclusion and deadlock prevention, along with their performance metrics. Design and implement distributed file systems and communication mechanisms between distributed objects, including remote invocation. Apply various methods for concurrency control and transaction management in distributed environm Develop proficiency in designing and implementing distributed algorithms for communication, routi and fault-tolerant services, considering factors like scalability and reliability. 	
Module Name	Content	No. ofHrs.
System Models	Architectural Models, Fundamental Models, Theoretical Foundation for Distributed System, Limitation of Distributed system, Absence of global clock, Shared memory, Logical clocks, Lamport's & vectors logical clocks, Causal ordering of messages, Global state, Termination detection. Resource sharing and the Web Challenges. Distributed Objects and Remote Invocation, Communication between distributed objects, Remote procedure call. Distributed File Systems, architecture, Sun Network File System, The Andrew File System.	10
Distributed Mutual Exclusion and Deadlock	Classification of distributed mutual exclusion, Requirement of mutual exclusion theorem, Token based and non-token based algorithms, Performance metric for distributed mutual exclusion algorithms. Resource vs. Communication deadlocks, Deadlock prevention, Avoidance, detection & resolution, Centralized dead lock detection, Distributed dead lock detection, Path pushing algorithms, edge chasing algorithms.	8
Agreement Protocols	Classification of Agreement problem, Byzantine Agreement problem, Consensus problem, Interactive Consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem.	8
Distributed Transactions	Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control, Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication, Fault - tolerant Services, highly available services, Transactions with replicated data.	10
Distributed Algorithms	Communication protocols, Balanced sliding window protocol, Routing algorithms, Destination based Routing, Deadlock free Packet switching, Wave & traversal algorithms, Election algorithm.	6
	Total No. of Hours	42
Text Books	1. Singhal & Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill.	
References	 Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", P Gerald Tel, "Distributed Algorithms", Cambridge University Press. 	earson Ed.

	GRAPH THEORY (SET/CS/BT/E502)	
Course Objective	 Provide a comprehensive understanding of graph theory concepts including sub paths, circuits, and various operations on graphs. Explore properties of trees and fundamental circuits, including spanning trees, F and the Traveling Salesman problem. Cover cuts-sets, cut vertices, network flows, and planar graphs along with their of planarity. Introduce vector space representations of graphs, matrix representations, and the including incidence matrices and adjacency matrices. Discuss coloring, covering, partitioning, matching, and enumeration techniques including the application of Polya's Counting Theorem. 	Hamiltonian paths, duals and detection eir relationships,
Course Outcome	 Demonstrate proficiency in analyzing basic graph properties and operations, suc walks, and connectivity. Apply graph theory concepts to solve problems related to trees, spanning trees, a paths. Understand cuts-sets, network flows, planar graphs, and their duals, and apply the problems. Utilize vector space and matrix representations to analyze graphs and their prop Apply coloring, covering, and partitioning techniques to solve problems related enumerate graphs using Polya's Counting Theorem. 	and Hamiltonian hem to solve related erties effectively.
Module Name	Content	No. of Hrs.
Module 1	<u>Graphs</u> : Sub Graphs, Basic Properties, Example of Graphs & Their Sub Graphs, Walks, Path & Circuits, Connected Graphs, Disconnected Graphs and Components, Euler Graphs, Various Operation on Graphs, Hamiltonian Paths and Circuits, The Traveling Salesman problem, <u>Trees and Fundamental Circuits</u> : Basic Properties of Tree, Distance and Centers, Radius and Diameters, Pendent Vertices, Rooted and Binary Trees, On Counting Trees, Spanning Trees, Fundamental Circuits, Finding Spanning Trees of a Graph and a Weighted Graph: Prim's Algorithm,Kruskal's Algorithm.	12
Module 2	<u>Cuts-sets and Cut Vertices:</u> Cut-sets, Properties of Cut-sets, Fundamental Circuits and Cut-sets, Connectivity and Separability, Network Flows, <u>Planer and Dual Graphs:</u> Combinatorial and Geometric Dual, Kuratowski to graphs detection of Planarity, geometric dual, some more criterion of planarity, thickness and crossings.	10
Module 3	<u>Vector Space of a Graph and Vectors:</u> Basis Vector, Curset Vector, Circuit Vector, Circuit and Cut-set verses Subspaces, Orthogonal Vectors and Subspaces, <u>Matrix Representation of Graphs</u> : Incidence Matrix of Graph, Sub Matrices of A(G), Circuit Matrix,Cut-set Matrix, Path Matrix and Relationships among Af, Bf, and Cf, Fundamental Circuit Matrix and Rank of B, Adjacency Matrices, Rank-Nullity Theorem	8
Module 4	Coloring, Covering and Partitioning: Chromatic Number, Chromatic Partitioning, Chromatic Polynomials, Matching, Covering, Four Color Problem, Directed Graphs, Some Type of Directed Graphs, Directed Paths, and Connectedness, Euler Digraphs, Trees with Directed Edges, Fundamental Circuits in Digraph, Matrices A, B and C of Digraphs Adjacency Matrix of a Digraph,	8
Module 5	<u>Enumeration:</u> Types of Enumeration, Counting of Labeled and Unlabeled Trees, Polya's CountingTheorem, Graph Enumeration with Polya's Theorem. Graph Theoretic Algorithms	6
	Total No. of Hours	44
Textbooks References	 Deo, N, "Graph Theory", PHI Harary, F, "Graph Theory", Narosa Bondy and Murthy, "Graph Theory and Application", Addison Wesley. 	

	PRINCIPLES OF PROGRAMMING LANGUAGES (SET/CS/H	BT/E503)
Course Objective	 Provide an understanding of the characteristics and factors influencing the evolu programming languages, along with developments in programming methodolog Introduce the structure and operations of programming language processors, inc and the concept of virtual computers. Cover data types in programming languages, including elementary data types, st types, and abstraction mechanisms like abstract data types. Explore sequence control mechanisms in programming languages, including im sequence control, recursion, exception handling, and concurrent execution. Discuss storage management in programming languages, including static and dy allocation, stack-based and heap-based storage management. 	ies. luding translators, ructured data plicit and explicit
Course Outcome	 Demonstrate knowledge of the characteristics and factors influencing programme evolution, enabling informed decision-making in language selection and design. Understand the structure and operation of programming language processors, aid development of efficient translation tools and virtual machines. Proficiency in working with data types in programming languages, including the assignment, and manipulation of variables, constants, and structured data types. Ability to implement various sequence control mechanisms, such as recursion, e and concurrency, to develop robust and efficient programs. Competence in managing memory resources efficiently through static and dynam management techniques, facilitating the development of scalable and reliable so 	ding in the e declaration, exception handling, nic storage
Module Name	Content	No. of Hrs.
Introduction	Characteristics of programming Languages, Factors influencing the evolution of Programming language, developments in programming methodologies, desirable features and design issues.	б
Programming Language Processors	Structure and operations of translators, software simulated computer, syntax, semantics, Structure, virtual computers, binding and binding time.	8
Data Types	Data object variables, constants, data types, elementary data types, declaration, assignment and initialization, enumeration, characters, strings. Structured data type and objects: Specification of data structured types, vectors and arrays, records, variable size data structure, pointers and programmer constructed data structure, Sets files. Abstractions, encapsulations, information hiding, sub programmes, abstract data types	12
Sequence Control	Implicit and Explicit sequence control, sequence control with within expression and statements, recursive sub programmes, exception handling, coroutines, Scheduled sub programmes, concurrent execution. Data control referencing environments, static and dynamic scope, local data local data referencing environment,	8
Storage Management	Major run time requirements, storage management phases, static storage management, stackbased, heap based storage management.	8
	Total No. of Hours 1. Terrance W Pratt, "Programming Languages: Design and Implementation" PHI 2. E Horowitz, "Programming Languages", 2nd Edition, Addison Wesley	42
Referen	 Sebesta, "Concept of Programming Language", Addison Wesley Fundamentals of Programming Languages, Galgotia. 	

Open Elective Courses

	Java Programming (SET/CS/BT/OE501)	
Course Objective	 Provide an understanding of the fundamental features of Java programming latits object-oriented nature and platform independence. Introduce the Java Virtual Machine (JVM) and byte code interpretation, along concepts such as data types, variables, arrays, expressions, operators, and control. Cover advanced topics in Java such as objects, classes, abstract classes, static classes, packages, wrapper classes, interfaces, and access control. Explore exception handling mechanisms in Java, including exception hierarchy finally blocks, and I/O operations using Java IO package. Introduce database connectivity in Java using JDBC, along with concepts like Servlets, Java Server Pages (JSP), and their applications in web development. 	with key rol structures. classes, inner y, try-catch-
Course Outcome	 Demonstrate proficiency in using Java's object-oriented features to develop robust and scalable software applications. Understand the architecture of Java Virtual Machine (JVM) and its role in executing Java byte code. Implement various control structures and data types in Java to manipulate data and control program flow effectively. Develop skills in handling exceptions and performing input/output operations using Java IO package, contributing to error-free and efficient Java programs. Gain practical experience in database connectivity using JDBC, along with web development concepts like Servlets, JSP, and Java Beans, enabling the development of dynamic and interactive web applications. 	
Module Name	Content	No. of Hrs.
Java Fundamentals	Features of Java, OOPs concepts, Java virtual machine, Reflection byte codes, Bytecode interpretation, Data types, variable, arrays, expressions, operators, and controlstructures, Objects and classes. Abstract classes, Static classes, Inner classes, Packages, Wrapper classes, Interfaces, This ,Super, Access control	10
Exception handling	Exception as objects ,Exception hierarchy, Try, catch, finally, Throw, throws, IO package, Input streams, Output streams, Object serialization, De-serialization, Sample programs on IO files, Filter and pipe streams, Multi-threading, Thread Life cycle, Multi-threading advantages and issues, Simple thread program, Thread synchronization, GUI, Introduction to AWT programming, Layout and component managers, Event handling, Applet class, Applet life-cycle, Passing parametersembedding in HTML, Swing components – J Applet, J Button, J Frame.	12
Java Beans and Web Servers	Introduction to Java Beans, Advantage, Properties, BDK, Introduction to EJB, Java Beans API Introduction to Servlets, Lifecycle, JSDK, Servlet API, Servlet Packages: HTTP package, Working with Http request and response, Security Issues. JSP: Introduction to JSP, JSP processing, JSP Application Design, Tomcat Server, Implicit JSP objects, Conditional Processing, Declaring variables and methods, Error Handling and Debugging, Sharing data between JSP pages- Sharing Session and Application Data.	10
Database Connectivity	Database Programming using JDBC, Studying Javax.sql. package, accessing a database from a JSP page, Application-specific Database Action, Developing Java Beansin a JSP page, introduction to Struts framework	10
Java Fundamentals	Features of Java, OOPs concepts, Java virtual machine, Reflection byte codes, Bytecode interpretation, Data types, variable, arrays, expressions, operators, and control structures, Objects and classes. Abstract classes, Static classes, Inner classes, Packages, Wrapper classes, Interfaces, This ,Super, Access control	10
Torthasle	Total No. of Hours	42
Textbooks References	 Java – Balaguruswamy Java Programming John P. Flynt Thomson 2nd Java Programming Language Ken Arnold Pearson The complete reference JAVA2, Herbert schildt. TMH Big Java, Cay Horstmann 2nd edition, Wiley India Edition 	

	PROJECT MANAGEMENT (SET/CS/BT/OE502)		
Course Objective	 Provide a comprehensive understanding of software project management fundamen project management cycle and its objectives. Introduce techniques and methods for software project planning, estimation, and der with the structure of a software project management plan. Explore project organization strategies, including work breakdown structures (WBS and various scheduling techniques. Cover the dimensions of project monitoring and control, including earned value ana reviews, to ensure project success. Discuss software quality assurance and testing principles, including test plans, test c metrics, along with software configuration management techniques and risk management 	cision-making, along (), project scheduling, lysis and software ases, and quality	
Course Outcome	 execution, and control of software projects. Develop skills in software project estimation and decision-making, contributing to a planning and resource allocation. Apply project organization strategies such as work breakdown structures and schedu effectively manage project resources and timelines. Utilize earned value analysis and other project monitoring techniques to track project adherence to budget and schedule. Implement software quality assurance and testing principles to ensure the delivery or software products, along with effective software configuration management practice and mitigate risks throughout the project lifecycle. 	rate proficiency in software project management fundamentals, enabling effective planning, a, and control of software projects. skills in software project estimation and decision-making, contributing to accurate project and resource allocation. oject organization strategies such as work breakdown structures and scheduling techniques to y manage project resources and timelines. urned value analysis and other project monitoring techniques to track project progress and ensure e to budget and schedule. Int software quality assurance and testing principles to ensure the delivery of high-quality products, along with effective software configuration management practices to manage changes	
Module Name	Content	No. of Hrs.	
Software Project Planning	Fundamentals of Software Project Management (SPM), Need Identification, Vision and Scope document, Project Management Cycle, SPM Objectives, Management Spectrum, SPM Framework, Software Project Planning, Planning Objectives, Project Plan, Types of project plan, Structure of a Software ProjectManagement Plan, Software project estimation, Estimation methods, Estimation models, Decision process.	10	
Project Organization	Project Elements, Work Breakdown Structure (WBS), Types of WBS, Functions, Activities and Tasks, Project Life Cycle and Product Life Cycle, Ways to Organize Personnel, Project schedule, Scheduling Objectives, Building the project schedule, Scheduling terminology and techniques. Network Diagrams, PERT, CPM, Bar Charts: Milestone Charts, Gantt Charts.	8	
Project Monitoringand Control	Dimensions of Project Monitoring & Control, Earned Value Analysis, Earned Value Indicators: BudgetedCost for Work Scheduled, Cost Variance, Schedule Variance, Cost Performance Index, Schedule Performance Index, Interpretation of Earned Value Indicators, Error Tracking, Software Reviews.	8	
Software Quality Assurance and Testing	Testing Objectives, Testing Principles, Test Plans, Test Cases, Types of Testing, Levels of Testing, Test Strategies, Program Correctness, Program Verification & validation, Testing Automation & Testing Tools, Concept of Software Quality, Software Quality Attributes, Software Quality Metrics and Indicators, The SEI Capability Maturity Model CMM), SQA Activities, Statistical quality assurance, Clean room process.	8	
Software Configuration Management	Software Configuration Items and tasks, Baselines, Plan for Change, Change Control, Change Requests Management, Version Control, Risk Management: Risks and risk types, Risk Breakdown Structure (RBS), Risk Management, Risk identification, Risk analysis, Risk planning, Risk monitoring, Cost Benefit Analysis.	8	
	Total No. of Hours	42	
Text books References	 M. Cotterell, "Software Project Management", TMH S. A. Kelkar, "Software Project Management", PHI Royce, "Software Project Management", Pearson Education Kieron Conway, "Software Project Management", Dreamtech Press 		

	OPTIMIZATION TECHNIQUES (SET/CS/BT/OE503)	
Course Objective	 Introduce students to classical optimization techniques and their applications in and management problems. Cover various optimization problem formulations, including single-variable an optimization with and without constraints. Explore linear programming concepts, including the simplex method and trans and their applications in real-world scenarios. Introduce dynamic programming and its application in solving multistage decise efficiently. Discuss simulation modeling as a powerful tool for analyzing complex systems making processes. 	d multi-variable portation problems, sion processes
Course Outcome	 Develop an understanding of classical optimization techniques and their releval wide range of optimization problems. Gain proficiency in formulating and solving optimization problems, including transportation problems, and integer programming. Acquire skills in using optimization techniques to solve real-world engineering problems efficiently. Demonstrate the ability to apply dynamic programming principles to solve mu problems and integer programming problems. Understand the principles of simulation modeling and its applications, along w and limitations of simulation techniques. 	linear programming, and management ltistage decision
Module Name	Content	No. of Hrs.
Introduction to Classical Optimization Techniques	Introduction to Classical Optimization Techniques: Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems. Classical Optimization Techniques: Single variable Optimization, Multi variable Optimization with and without constraints, Multivariable Optimization with equality constraints - solution by method of Lagrange multipliers, Multivariable Optimization with inequality constraints - Kuhn – Tucker conditions.	10
Linear Programming	Various definitions, statements of basic theorems and properties, Advantages, Limitations and Application areas of Linear Programming, Graphical method of Linear Programming problem. Simplex Method – Phase me and Phase II of the Simplex Method, The Revised Simplex method, Primal and Dual Simplex Method, Big –M method.	
Transportatio n Problem	Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems. (Including assignment and travelling salesman problems) (No degeneracy problems). Queuing Models : Essential features of queuing systems, operating characteristics of queuing system, probability distribution in queuing systems, classification of queuing models, solution of queuing M/M/1 : ¥ /FCFS,M/M/1 : N/FCFS, M/M/C : ¥/FCFS, M/M/C : N/FCFS.	8
Dynamic Programming	Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution. Integer Programming: Pure and mixed integer programming problems, Solution of Integer programming problems – Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-one programming.	
Simulation Modeling	Introduction, Definition and types, Limitations, Various phases of modeling, Monte Carlo method, Applications, advantages and limitations of simulation.	8
	Total No. of Hours	42
Text books	 S.S.Rao, "Engineering optimization: Theory and practice", New Age Internat H A Taha, "Operations Research: An Introduction", 5th Edition, Macmillan, 	tional (P) Limited.
References	 H A Taha, "Operations Research: An Introduction", 5th Edition, Macmilian, K.V. Mittal and C. Mohan, "Optimization Methods in Operations Research a International (P) Limited, Publishers. G. Hadley, "Linear programming", Narosa Publishing House, New Delhi. NVR Naidu, G Rajendra, T Krishna Rao, "Operations Research", I K Interna house, New Delhi. 	nd systems Analysis",

Semester VI

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/C601	Compiler Design	3	1	-	4	4
2	Core	SET/CS/BT/C602	Computer Graphics	3	1	-	4	4
3	Subjects	SET/CS/BT/C603	Cryptography and Network Security	3	1	-	4	4
4			Program Elective-2	3	1	-	4	4
5	Open Elective/Int er- disciplinary Subject		Open Elective-2	3	1		4	4
6	Core Subjects	SET/CS/BT/C604	Compiler Designing Lab	-		1	3	1
7	Based Labs	SET/CS/BT/C605	Computer Graphics Lab			1	3	1
8	Communicati on skills/CC	SET/CS/BT/M606	Communication skill Course* /Technical Seminar	-	-	1	4	2
9	Skill Course	SET/CS/SC/C607	Mini Project			1	4	2
	Total				5	4	34	26

* University will prepare communication courses in Modern/Indian languages from which student will select one language course. The course will be more on applied side with giving students a chance to develop their soft skills.

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/E601	Data Mining and Data Warehousing	3	1	-	4	4
2	Program	SET/CS/BT/E602	E-Commerce	3	1	-	4	4
3	Elective-2	SET/CS/BT/E603	Data Science	3	1	-	4	4
1	0.000	SET/CS/BT/OE601	Robotic Engineering	3	1	-	4	4
2	Open Elective-2	SET/CS/BT/OE602	Web Technology	3	1		4	4
3		SET/CS/BT/OE603	Digital Image Processing	3	1		4	4

Program Elective and Open Elective Courses

Note: Entry/Exit Option with Advanced Diploma/ Bachelor degree in Vocational Education (Computer Science and Engineering), may be allowed after completion of <u>SSD course work</u> in any one semester within one to six semesters and successfully completing three years, and as per requirements defined in the admission procedure and eligibility of the School.

	COMPILER CONSTRUCTION (SET/CS/BT/C601)	
Course Objective	 Provide an introduction to compilers and their role in translating high-leve languages into machine code. Cover the phases and passes involved in the compilation process, including syntax analysis, semantic analysis, code generation, and optimization. Introduce finite state machines, regular expressions, and formal grammars, applications to lexical and syntax analysis. Explore syntactic specification of programming languages using context-fn parsing techniques such as shift-reduce parsing and operator precedence parsing to biscuss syntax-directed translation schemes, symbol tables, run-time admin detection, recovery, and basic concepts of code optimization. 	g lexical analysis, along with their ree grammars and arsing.
Course Outcome	 Gain an understanding of the compilation process and the various phases in development of basic compilers. Acquire proficiency in implementing lexical analyzers using finite state ma expressions. Develop skills in specifying the syntax of programming languages using co and constructing parsers for efficient syntax analysis. Demonstrate the ability to implement syntax-directed translators and handl managing scope information. Understand the basics of error detection and recovery in the compilation pr the concepts of code optimization for improving program efficiency. 	achines and regular ontext-free grammars le symbol tables for
Module Name	Content	No. of Hrs.
Fundamental Concept	Introduction to Compiler, Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Implementation of lexical analyzers, lexical-analyzer generator, LEX-compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC.	10
Syntactic specification of programming languages	Context free grammars, derivation and parse trees, capabilities of CFG. Basic Parsing Techniques, Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, Implementation of LR parsing tables, constructing LALR sets of items.	12
Syntax- directed	Syntax-directed Translation schemes, Implementation of Syntax- directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three	10
Translation	address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations, and case statements.	
Symbol Tables	Data structure for symbols tables, representing scope information. Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors. Introduction to code optimization: Loop optimization, the DAG representation of basic blocks, value Numbers and algebraic laws, Global Data-Flow analysis.	10
	Total No. of Hours	42
Textbooks	1. Aho, Sethi and Ullman, "Compiler Design", AddisionWesley.	
References	 Introduction to Automata Theory, Languages, and Computation, Johne E. Hopcroft, Rajeev Mo Education 	twani, Jeffrey D. Ulman, Pea

	Education
2.	Advanced Compiler Design and Implementation, Steven Muchnick, Morgan Kaufman Publication

	COMPUTER GRAPHICS (SET/CS/BT/C602)		
Course Objective	 Provide an understanding of graphics primitives and their representation on display de including points, lines, polygons, and segments. Cover the generation and manipulation of graphics primitives, including line generation filling, and segment manipulation. Introduce transformations, windowing, and clipping techniques for manipulating and segmentics objects in two and three dimensions. Explore interaction techniques for handling hardware input devices and implementing graphics applications. Discuss hidden line and surface removal algorithms, as well as rendering and illuminat techniques for producing realistic graphics. 	on, polygon viewing interactive	
Course Outcome	 Develop proficiency in generating and manipulating graphics primitives on display de enabling the creation of basic graphical applications. Acquire skills in implementing line generation algorithms, polygon filling algorithms, segment manipulation techniques for efficient graphics rendering. Demonstrate the ability to apply transformations, windowing, and clipping techniques manipulate and view graphics objects effectively. Gain practical experience in implementing interactive graphics applications, including input devices and implement advanced graphics algorithms such as hidden line and surf removal, as well as rendering and illumination techniques, to produce visually appeali realistic graphics. 	and to handling face	
Module	Content	No. of	
Name		Hrs.	
Graphics Primitives	Display devices, Primitive devices, Display File Structure, Display control	4	
Line	Text. Points lines, Planes, Pixels and Frame buffers, vector and character generation. Polygon	12	
generation, Polygon,	Representation, Entering polygons, Filling polygons. Segments table, creating deleting and renaming segments, visibility, image transformations.	12	
Segments	Segments table, cleating deleting and renaming segments, visionity, image transformations.		
Transformation	Matrices transformation, transformation routines, displays procedure. Viewing	12	
s, Windowing and Clipping	transformation and clipping, generalize clipping, multiple windowing. Three Dimension: 3-D geometry primitives, transformations,	12	
	Projection clipping.		
Interaction	Hardware input devices handling algorithms, Event handling echoing, Interactive techniques.	б	
Hidden Line and Surface	Back face removal algorithms, hidden line methods.	4	
Rendering and	Introduction to curve generation, Bezier, Hermite and Bspline algorithms	4	
Illumination	And their comparisons.		
	Total No. of Hours	42	
Textbooks	 Rogers, "Procedural Elements of Computer Graphics", McGrawHill Asthana, Sinha, "Computer Graphics", Addison Wesley Newman and Sproul, "Princip Interactive Computer Graphics", McGrawHill. 	le of	
References3. Steven Harrington, "Computer Graphics", A Programming Approach, 2ndEdition 4. Rogar and Adams, "Mathematical Elements of Computer Graphics", McGrawHill.			

	CRYPTOGRAPHY AND NETWORK SECURITY (SET/CS/BT/C 603)	
Course Objective	 Provide a comprehensive understanding of security attacks, services, and mechanism systems. Cover classical encryption techniques and modern block ciphers, including their prin strengths, and modes of operation. Introduce mathematical concepts such as prime numbers, modular arithmetic, and dis logarithms, essential for understanding cryptographic algorithms. Explore public key cryptosystems, including the RSA algorithm, Diffie-Hellman key elliptic curve cryptography. Discuss message authentication, hash functions, digital signatures, and authentication including Kerberos, X.509, and digital certificate standards. 	ciples, screte v exchange, and
Course Outcome	 Develop proficiency in analyzing security attacks and mechanisms, enabling the desi computer systems. Acquire skills in implementing classical encryption techniques and understanding the strengths of modern block ciphers. Understand mathematical concepts essential for cryptography, including prime numb arithmetic, and discrete logarithms. Demonstrate the ability to implement public key cryptosystems and understand their properties and key management protocols. Gain practical experience in implementing message authentication, hash functions, d and authentication applications, facilitating secure communication and data integrity systems. 	e principles and pers, modular security igital signatures
Module Name	Content	No. of Hrs.
Module 1	Security attacks, Services and Mechanism, Conventional encryption model, classical encryption techniques substitution ciphers and transposition ciphers, cryptanalysis, stereography, stream and block ciphers. Modern Block Ciphers: Block ciphers principals, Shannon's theory of confusion and diffusion, fiestal structure, data encryption standard (DES), strength of DES, differential and linear crypt analysis of DES, block cipher modes of operations, triple DES, IDEA encryption and decryption, strength of IDEA, confidentiality using conventional encryption, traffic confidentiality, key distribution, random number generation.	10
Module 2	Introduction to graph, ring and field, prime and relative prime numbers, modular arithmetic, Fermat's and Euler's theorem, primality testing, Euclid's Algorithm, Chinese Remainder theorem, discrete logarithms. Principals of public key crypto systems, RSA algorithm, security of RSA, key management, Diffle-Hellman key exchange algorithm, introductory idea of Elliptic curve cryptography, Elganel encryption.	8
Module 3	Message Authentication and Hash Function: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions and MACS, MD5 message digest algorithm, Secure hash algorithm(SHA). Digital Signatures: Digital Signatures, authentication protocols, digital signature standards (DSS),proof Of digital signature algorithm.	8
Module 4	Authentication Applications: Kerberos and X.509, directory authentication service, electronic mail security-pretty good privacy (PGP), S/MIME.	8
Module 5	IP Security: Architecture, Authentication header, Encapsulating security payloads, combining security associations, key management. Web Security: Secure socket layer and transport layer security, secure electronic transaction (SET). System Security: Intruders, Viruses and related threads, firewall design principals, trusted systems.	8
	Total No. of Hours	42
Textbooks	1. William Stallings, "Cryptography and Network Security: Principals and Practice", Hall, New Jersy.	Prentice
References	 Johannes A. Buchmann, "Introduction to Cryptography", Springer-Verlag. B. Forouzan, "Cryptography and Network Security, TMH 	

Program Elective Courses

	DATA MINING AND DATA WAREHOUSING (SET/CS/BT/E 601)	
Course Objective	 Provide an introduction to data mining and data warehouses, including their fundam and architectures. Cover data pre-processing techniques such as cleaning, integration, transformation, discretization essential for preparing data for analysis. Introduce association rule mining, classification, prediction, and cluster analysis tech extracting meaningful patterns and insights from large datasets. Explore various data mining primitives, query languages, graphical user interfaces, a architectures used in data mining applications. Discuss recent trends and applications of data mining, including multidimensional a complex data object mining, spatial databases, multimedia databases, and text databases 	reduction, and hniques for and nalysis,
Course Outcome	 Develop a comprehensive understanding of data mining and data warehousing concernent the design and implementation of effective data mining solutions. Acquire skills in data preprocessing techniques for cleaning, integrating, transformin reducing data noise and redundancy. Demonstrate proficiency in association rule mining techniques, including single-dim multidimensional association rule mining, and correlation analysis. Understand classification, prediction, and cluster analysis methods, including decision induction, Bayesian classification, and partitioning methods. Gain practical experience in applying data mining techniques to various real-world a including spatial databases, multimedia databases, time series data, and text databases to informed decision-making and trend analysis. 	ng, and nensional and on tree applications,
Module Name	Content	No. of Hrs.
Fundamental of Data Mining, and Data Warehouses	Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation - Data Warehousing to Data Mining –Data warehousing components-building a data warehouse – mapping the data warehouse to an architecture - data extraction - cleanup- transformation tools- metadata – OLAP - Patterns and models - Data visualization principles.	8
Data Preprocessing, Language, Architectures, Concept Description	Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures	8
Association Rule	Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases- mining multidimensional Association rules –association mining to correlation analysis- constraint based association mining.	8
Classification and Prediction	Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy.	8
Cluster Analysis	Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, hierarchical methods, density based methods, grid based methods - Outlier Analysis. Recent trends - Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining	10
Torthereby	Total No. of Hours	42 " T-4-
Textbooks	1. Alex Berson and Stephen J. Smith, "Data Warehousing, Data mining and OLAP" McGraw-Hill, 2004. (UNIT V)	", Tata
References	 Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson 2004. Sam Anahory and Dennis Murry, "Data Warehousing in the Real World", PearsonE J. Han and M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India /Morga 2001. 	Education, 2003.

	E-COMMERCE (SET/CS/BT/E602)	
Course Objective	 Explore the economic potential of electronic commerce (E-commerce) and the ince businesses to engage in online transactions. Examine the forces behind E-commerce and its advantages and disadvantages, alon impact on traditional business models. Understand the architectural framework of E-commerce systems and the network in supporting online transactions. Discuss security issues in E-commerce, including the importance of firewalls, trans security, and encryption techniques to protect sensitive information. Explore electronic payment systems, including protocols like SET, payment gatewa tokens, and various methods of online payments. 	g with its nfrastructure action
Course Outcome	 Develop a comprehensive understanding of the economic potential and incentives of commerce, enabling students to identify opportunities and challenges in online busi Gain insight into the architectural framework of E-commerce systems, including th infrastructure required for secure and efficient transactions. Acquire knowledge of security issues in E-commerce and understand the importance implementing security measures such as firewalls and encryption techniques to provintegrity and confidentiality. Demonstrate proficiency in evaluating different electronic payment systems and un their functionalities and security features. Understand the application of E-commerce technologies in various business contex online banking, electronic data interchange (EDI), and emerging trends in mobile co preparing students for careers in digital business environments. 	ness. e network ee of tect data derstanding ts, including
Module Name	Content	No. of Hrs.
Technology and Prospects	Economic potential of electronic commerce, Incentives for engaging in electronic commerce, forces behind E-Commerce, Advantages and Disadvantages, Architectural framework, Impact of E-Commerce on business.	8
Network Infrastructure of E- Commerce	Internet and Intranet based E-Commerce Issues, problems and prospects, Network Infrastructure, Network Access Equipment's, Broadband telecommunication (ATM, ISDN, and FRAME RELAY). Mobile Commerce: Introduction, Wireless Application Protocol, WAP Technology, Mobile Information device, Mobile Computing Applications.	10
Web Security	Security Issues on web, Importance of Firewall, components of Firewall, Transaction security, Emerging client server, Security Threats, Network Security, Factors to consider in Firewall design, Limitation of Firewalls.	8
Encryption	Encryption techniques, Symmetric Encryption-Keys and data encryption standard, Triple encryption. Asymmetric encryption-Secret key encryption, public and private pair key encryption, Digital Signature, Virtual Private Network.	8
Electronic Payments	Overview, The SET protocol, payment Gateway, certificate, digital Tokens, Smart card, credit card, magnetic strip card, E-Checks, Credit/Debit card based EPS, online Banking EDI Application in business	8
Textbooks	Total No. of Hours 1. E-Commerce, Ritendra Goel, New Age International Publishers	42
References	 E-Commerce, Ritendra Goel, New Age International Publishers RaviKalakota, AndrewWinston,:FrontiersofElectronicCommerce"Addison Wesley. Bajaj and Nag. "E-Commerce the cutting edge of Business".TMH. P. Loshin, John Vacca, "Electronic Commerce" Firewall Media,N.Delhi. E Business & Commerce: BrahmCazner, Wileydreamtech. 	

	DATA SCIENCE (SET/CS/BT/E603)	
Course Objective	 Provide an overview of data science, including its applications, tools, and technic programming fundamentals in languages such as Python and R. Introduce mathematical concepts essential for data science, including calculus, liprobability, and statistics, enabling students to understand and analyse data effect Explore machine learning concepts and algorithms, including supervised, unsuper reinforcement learning, preparing students to apply machine learning techniques problems. Cover big data technologies such as Hadoop, Spark, and NoSQL databases, along learning concepts and algorithms, enabling students to work with large datasets a models. Discuss data visualization techniques, tools, and database management systems, i relational database concepts, SQL querying, database design, and data manipulat enhancing students' ability to visualize and manage data efficiently. 	near algebra, tively. rvised, and to real-world g with deep nd complex
Course Outcome	 Develop a comprehensive understanding of data science principles, techniques, a enabling students to analyse and interpret data effectively. Acquire proficiency in programming languages such as Python and R, along with algorithms, and object-oriented programming principles, facilitating software dev data science projects. Gain knowledge of mathematical concepts necessary for data science, including of algebra, probability, and statistics, enhancing students' ability to perform advance Demonstrate proficiency in applying machine learning algorithms to solve real-w including regression, classification, clustering, and neural networks, fostering a d understanding of machine learning concepts. Understand big data technologies, deep learning concepts, data visualization tech database management systems, enabling students to work with large datasets, con and visualization tools effectively in data science projects. 	a data structures, velopment in calculus, linear ed data analysis. vorld problems, eeper niques, and
Module	Content	No. of Hrs.
Introduction to Data Science and Programming Fundamentals	Overview of Data Science, Applications of Data Science, Need of Data Science, Tools and Technique in Data Science, Basics of Programming Language (Python, R), Data Structures, Algorithms, Object-Oriented Programming Principles.	8
Mathematics for Data Science	Calculus, Linear Algebra, Probability, Statistics, Regression Analysis, Hypothesis Testing.	8
Machine Learning	Introduction to Machine Learning, Supervised Learning, Unsupervised Learning, Reinforcement Learning, Algorithms (Linear Regression, Logistic Regression, Decision Tree, Support Vector Machines, Clustering, Neural Networks.	8
Big Data Technologies and Deep Learning	Introduction to Big Data, Big Data Technologies (Hadoop, Spark, NoSQL, databases), Introduction to Deep Learning, Deep Neural Network, Convolutional Neural Network, Recurrent Neural Network, Applications in Image Recognition, Speech Recognition, and Natural Language Processing.	10
Data Visualization and Database Management Systems	Overview of Data Visualization, Techniques of Data Visualization, Data Visualization Tools, Introduction to Database Systems, Relational Database Concepts, SQL Querying, Database Design, Data Manipulation Techniques.	10
	Total No. of Hours	44
Text Books	1. "Data Science and Machine Learning using Python" By Dr Reema Thareja, McGraw Hill Publication	
References	 "Introduction to Data Science: Practical Approach with R and Python" by B. Uma Maheswari, R. Sujatha, Wiley Publication "INTRODUCTION TO DATA SCIENCE" by Dr. Sushil Dohare, Dr. V SelvaKumar, Sachin Raval, Dr. Sumegh Shrikant Tharewal, Published by Xoffencer 	

Open Elective Courses

	ROBOTIC ENGINEERING(SET/CS/OE601)	
Course Objective	 Introduce students to the field of robotics, including its history, types of robots, a applications in different industries. Provide an understanding of robot kinematics, covering coordinate systems, forw kinematics, and the Jacobian matrix. Explore robot dynamics and control, including Newton-Euler equations, Lagrang dynamic models of robots, and different control techniques such as PID control a control. Discuss sensors and perception in robotics, including types of sensors, vision syst localization, mapping, and actuators such as DC motors, servo motors, grippers, a effectors. Cover robot programming aspects, including programming languages commonly such as C++ and Python, robot operating systems, simulation, and modelling tech 	ard and inverse e equations, nd feedback tems, and end- used in robotics
Course Outcome	 Gain knowledge about the history, types, and applications of robotics, enabling st understand the scope and potential of robotics in various fields. Understand the principles of robot kinematics, including coordinate systems and equations, facilitating the analysis and design of robot manipulators. Acquire proficiency in robot dynamics and control, allowing students to model ro and implement control strategies for robot motion. Learn about sensors and perception systems used in robotics, along with actuator manipulation tasks, enabling students to design and implement robotic systems w actuation capabilities. Develop skills in robot programming, including using programming languages ar operating systems, facilitating the development and deployment of robotic applic world scenarios. 	kinematic obot dynamics s for rith sensing and nd robot
MODULE	CONTENT	No. of Hrs.
Introduction to Robotics and Robot Kinematics	Introduction to Robotics, History of Robotics, Types of Robots, Application of Robotics, Robot Kinematics: Coordinate Systems, Forward and Inverse Kinematics, Jacobian Matrix.	8
Robot DynamicsandRobotControl	Newton -Euler Equations, Lagrange Equations, Dynamics Models of Robots, Robot Controls: PID Control, Feedback Control, Motion Planning.	8
Sensor and Perceptions and Actuators and Manipulations	Introduction to Sensors, Types of Sensors, Range Sensors, Vision Systems, Localization and Mapping, Actuators: Introduction to Actuators, DC Motors, Servo Motors, Grippers and End-Effectors.	10
Robot Programming	Programming Language for Robotics (e.g., C++, Python), Robot Operating Systems, Simulation and Modelling.	10
Robot Design and Manipulation	Design Consideration, Mechanical Design, Electrical and Electronic Components.	6
	Total No. of Hours	42
Text Books References	 Introduction to Robotics: Mechanics and Control by John J. Craig "Robot Modelling and Control" by Mark w. Spong, Seth Hutchinson, and M. Vidyasagar "ROS Robotics" by Example by Carol Fairchild "Robotics: Modelling, Planning and Control" by Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Orilo. 	

	WEB TECHNOLOGY (SET/CS/BT/OE602)	
Course Objective	 Provide an introduction to web technologies, covering the history and evolution of Web and the basics of client-server architecture. Teach HTML (Hypertext Mark-up Language) and CSS (Cascading Style Sheets), structure of HTML documents, semantic mark-up, forms, multimedia embedding elements, and layout techniques. Introduce JavaScript programming fundamentals, focusing on DOM manipulation and asynchronous programming using Promises and a sync/await. Explore web development tools such as text editors, IDEs, version control with G developer tools to aid in web development. Cover backend technologies and databases, including server-side programming la Node.js, Python, and PHP, server-side frameworks, relational and NoSQL databa design principles. 	including the , styling HTML n, event handling, it, and browser unguages like
Course Outcome	 Understand the structure and components of web development, including HTML, JavaScript, enabling students to create and style web pages. Gain proficiency in client-side scripting with JavaScript, allowing students to ma Document Object Model (DOM) and handle events on web pages. Familiarize with common web development tools and techniques, empowering st efficiently develop and debug web applications. Acquire knowledge of backend technologies and databases, enabling students to l web applications with server-side logic and interact with databases. Learn about web security best practices and performance optimization techniques students to develop secure, high-performing web applications. 	nipulate the udents to puild dynamic
MODULE	CONTENT	No. of Hrs
Introduction to Web Technologies:	Introduction to Website, History and evolution of the World Wide Web, Client-server architecture, Basic terminology (HTML, CSS, JavaScript, etc.).	8
HTML (Hypertext Mark-up Language) and CSS (Cascading Style Sheets)	Structure of HTML documents, Semantic mark-up, Forms and input elements, Multimedia embedding. CSS: Styling HTML elements, Layout techniques (flexbox, grid), Responsive design, CSS frameworks (Bootstrap, Foundation).	10
JavaScript and Web Development Tools	Fundamentals of JavaScript programming, DOM manipulation, Event handling, Asynchronous programming with Promises and a sync/await, Web Development Tools: Text editors and IDEs, Version control with Git, Browser developer tools.	10
Backend Technologies and Databases	Introduction to server-side programming languages (e.g., Node.js, Python, PHP), Server- side frameworks (e.g., Express.js, Flask, Django), Databases: Relational databases (e.g., MySQL, PostgreSQL), NoSQL databases (e.g., MongoDB), Database design and normalization.	10
WebSecurityandWebPerformanceOptimization	Common security threats (e.g., XSS, CSRF), Authentication and authorization, HTTPS and SSL/TLS, Web Performance Optimization: Minification and compression, Caching strategies, Load balancing and content delivery networks (CDNs).	8
	Total No. of Hours	46
Text Books	 Web Programming, building internet applications, Chris Bates 2nd edition, WILEY Dreamtech Core SERVLETS ANDJAVASERVER PAGES VOLUME 1: CORE TECHNOLOGIES By Marty Hall and Larry Brown Pearson 	
References	 An Introduction to WEB Design and Programming –Wang-Thomson PHP: The Complete Reference Steven Holzner TataMcGraw-Hill. 	

	DIGITAL IMAGE PROCESSING (SET/CS/BT/OE603)	
Course Objective	 Provide an introduction to image processing, covering digital images, image s multiview geometry. Teach image enhancement techniques, including spatial and frequency domain improve image quality and clarity. Explore image restoration methods to remove noise and improve the quality o Introduce color image processing fundamentals, color models, and color trans techniques. Cover advanced topics such as wavelets, morphological image processing, im and segmentation algorithms. 	n enhancements, to f degraded images. formation
Course Outcome	 Understand the principles and fundamentals of digital image processing, inclure presentation, sampling, and basic operations. Gain proficiency in applying spatial and frequency domain techniques for imarestoration, and color manipulation. Learn advanced image processing techniques such as wavelet transforms and soperations for feature extraction and analysis. Acquire knowledge of image compression algorithms and segmentation methors storage and analysis of image data. Develop skills to implement and apply various image processing algorithms to problems in fields like computer vision, medical imaging, and remote sensing 	age enhancement, morphological ods for efficient o solve real-world
Module Name	Content	No. of Hrs.
Introduction and Fundamentals	Introduction to Image Processing, Digital Images- The Eye, Brightness, Image Sampling, Neighbors of Pixels Distance. Multiview Geometry- Stereo Vision, The correspondence problem; Algorithms for Stereo Matching,	8
Image Enhancement	Spatial Image Enhancements- Transformations: Negative, Log, Power, Histogram, Subtraction, Averaging, Smoothing, Laplacian. Frequency Domain Image Enhancements 1D FT(Fourier Transform), Inverse, 2D FT, Filtering, Low pass, High pass, Un-sharp, High-Boost, Use of FT, Fast FT	8
Image Restoration Color Image Processing	Noise, Mean filter, Median, Min, Max, Midpoint, and Adaptive filters, Frequency Domain, etc Color Fundamentals, Color Models, Converting Colors to Different Models, Color Transformation, Smoothing and Sharpening, Color Segmentation.	8
Applications of Wavelets Morphological Image Processing	Multi Resolution Expansions, Wavelet Transform in One Dimension, The Fast Wavelet Transform, Wavelet Transform in Two Dimensions Erosion and Dilation, Opening and Closing, The Hit or Miss Transformations, Some Basic Morphological algorithms	8
Image Compression And Segmentation	Need for Data Compression, Huffman Coding, Golomb coding, Arithmetic coding, LZW coding, Run Length coding, Bit plane coding and Wavelet coding Edge Detection, Thresholding, Region based Segmentation, Segmentation using Morphological Watersheds and the use of motion in Segmentation. Algorithm.	10
	Total No. of Hours	42
Textbooks	 Rafael C. Gonzalvez and Richard E. Woods, "Digital Image Processing", 2n Education. 	d Edition, Pearson
References	 R.J. Schalkoff. "Digital Image Processing and Computer Vision", Wiley A.K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Prentice Hall. 	

Semester VII

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/C701	Artificial Intelligence	3	1	-	4	4
2	Core Subjects		Program Elective-3	3	1	-	4	4
3	-		Program Elective-4	3	1	-	4	4
4	Core Subjects	SET/CS/BT/C702	Artificial Intelligence Lab	-	-	1	3	1
5	Based Labs/Indust rial Oriented Training	SET/CS/BT/S703	Industrial Training Seminar	-	-	1	3	1
6	Life Skills and personality development		Essential Management Practices*	2	-	-	2	2
7	Skill Course	SET/CS/SC/C704	Project Stage-1	-	-	1	8	4
	1	Total		11	3	3	28	20

* University will prepare a course with focus on essential management practices.

S. No.	Category	Course Code	Course Title	L	Т	Ρ	Contact Hrs./Week	Credits
1	Ducanan	SET/CS/BT/E701	Wireless and Mobile Computing	3	1	-	4	4
2	Program Elective-3	SET/CS/BT/E702	Security Architecture & Operating System Security	3	1	-	4	4
3		SET/CS/BT/E703	Neural Network	3	1	-	4	4
1	Brogram	SET/CS/BT/E704	Real Time System	3	1	-	4	4
2	Program Elective-4	SET/CS/BT/E705	Cloud Computing	3	1	-	4	4
3		SET/CS/BT/E706	Computer Vision	3	1	-	4	4

	ARTIFICIAL INTELLIGENCE (SET/CS/BT/C701)	
Course Objective	 Understand Problem Solving Methods: Introduce various problem-solving tee including production systems, state space search, and control strategies. Explore Heuristic Search Techniques: Teach heuristic search methods such a breadth-first search, depth-first search, and best search. Knowledge Representation: Cover different knowledge representation method predicate logic, semantic nets, and fuzzy logic. AI Applications: Provide an overview of AI applications in neural networks, processing, speech recognition, and robotics. Expert Systems Design: Explain the structure and design of expert systems, is interaction with experts and practical application. 	as hill climbing, ods, including , natural language
Course Outcome	 Proficient in Problem Solving Techniques: Gain proficiency in applying vari solving methods and control strategies to complex problems. Heuristic Search Skills: Develop skills in implementing and utilizing heurist techniques to find optimal solutions efficiently. Knowledge Representation Competency: Understand and apply different know representation methods for effective AI problem-solving. AI Application Insights: Acquire knowledge of AI applications and their pra- such as neural networks, natural language understanding, and robotics. Expert System Design: Learn how to design and implement expert systems, understanding their structure, interaction, and applications in real-world scer 	ic search owledge ctical uses in fields including
Module Name	Content	No. of Hrs.
Problem Solving Methods	Production systems ,State space search , Control strategies , Heuristic search, Forward and backward reasoning, Hill Climbing techniques, Breadth first search, Depth first search, Best search , Staged search., Predicate logic, Resolutionquestionanswering,Nonmonoticreasoning,Stasticalandprobalistic reasoning,	12
Knowledge Representation	Predicate logic, Resolution question answering, Nonmonoticreasoning, Stastical and probalistic reasoning, Fuzzy logic, Semantic Nets, Conceptual dependency, Frames, Scripts.	10
AI Application	Neural Networks, Natural language understanding, speech recognition and understanding, Learning, perception, AI robotics, satellite imaging and medical diagnosis.	10
Expert	Structure of an expert system, interaction with an expert, Design of an expert	10
Systems	system.	
Textbooks	Total No. of Hours 1. E. Rich & K. Knight : Artificial Intelligence.	42
References	 N. J. Nilsson : Principles of Artificial Intelligence A. Barr, E. A. Fergenbaumand& P. R. Cohen : Artificial Intelligence. 4. D. A. Waterman : A guide to Expert System. 	

	ARTIFICIAL INTELLIGENCE LAB (SET/CS/BT/C702)	
Lab Objective	1. To understand and implement fundamental algorithms in computer sc	ience using Python.
	2. To develop problem-solving skills through coding classic algorithmic pr	oblems.
	3. To gain proficiency in Python programming and improve coding practic	ces.
	4. To apply theoretical knowledge to practical coding challenges, enhanci	ng comprehension of
	algorithms.	
	5. To foster logical thinking and algorithmic design skills applicable to rea	l-world problems.
Lab Outcome	1. Students will be able to implement and understand Breadth First Searc	h and Depth First Search
	algorithms in Python.	
	2. Students will successfully code and execute classic problems such as the	e 8-Puzzle, Water-Jug,
	and Tic-Tac-Toe, demonstrating applied problem-solving skills.	
	3. Students will be proficient in implementing complex algorithms like the	e Travelling Salesman
	Problem and Alpha-Beta Pruning in Python.	
	4. Students will gain the ability to design and implement solutions for cor	nbinatorial problems
	such as the 8-Queens Problem and Tower of Hanoi.	
	5. Students will develop and enhance their logical reasoning and coding s	kills, preparing them for
	more advanced computational challenges and real-world applications.	
Module Name	Content	No. of Hrs.
	1. Write a Program to Implement Breadth First Search using Python.	
	2. Write a Program to Implement Depth First Search using Python.	
	3. Write a Program to Implement Tic-Tac-Toe game using Python.	
	4. Write a Program to implement 8-Puzzle problem using Python.	
	5. Write a Program to Implement Water-Jug problem using Python.	
	6. Write a Program to Implement Travelling Salesman Problem using	
	Python.	
	7. Write a Program to Implement Tower of Hanoi using Python.	
	8. Write a Program to Implement Monkey Banana Problem using Python.	
	9. Write a Program to Implement Alpha-Beta Pruning using Python.	
	10. Write a Program to implement 8-Queens Problem using Python.	
Total No. of Hours		36

	INDUSTRIAL TRAINING SEMINAR (SET/CS/BT/S703)	
Course Objective	 To provide students with hands-on experience in industrial settings. To enhance students' technical and soft skills. To familiarize students with current industry practices and technologies. To facilitate professional networking opportunities. To develop students' critical thinking and problem-solving abilities. 	
Course Outcome	 Students will be able to apply theoretical concepts to practical situations. Students will demonstrate improved technical proficiency with industry-stand technologies. Students will gain a better understanding of industry standards and expectation Students will develop enhanced communication skills through interactions and Students will experience personal and professional growth, including increase adaptability. 	ns. 1 presentations.
Module Name	Content	No. of Hrs.
	Student shall prepare a detailed report on her/his industrial training and deliver a seminar of 30 minutes.	-
	Total No. of Hours	-

	PROJECT Stage - I (SET/CS/BT/S704)	
Course Objective	 Literature Review and Research Skills: To enable students to conduct a study of published literature on a given topic, identifying key research p Problem Identification and Definition: To teach students how to select a relevant and feasible research problem within the scope of their assigned Preliminary Solution Development: To guide students in developing a p solving the identified problem, including conceptualizing models, simul feasibility studies. Analytical and Technical Proficiency: To enhance students' abilities to c analysis, modeling, or simulation, and to design experiments or feasibili their research problem. Communication and Presentation Skills: To improve students' skills in p comprehensive written reports and delivering effective oral presentation research findings and methodologies. 	apers, trends, and gaps. nd precisely define a d topic. reliminary approach to ations, experiments, and conduct preliminary ty studies related to preparing
Course Outcome	 Enhanced Research Skills: Students will be proficient in conducting con reviews, identifying key research works, and understanding the current s their research area. Clear Problem Definition: Students will be able to define a specific, rele problem within the context of their assigned topic. Preliminary Solution Approaches: Students will develop the ability to co formulate preliminary approaches to solving the identified problem, den feasibility and validity. Technical Analysis and Design: Students will gain experience in perforr analyses, designing models, simulations, or experiments, and evaluating approaches. Effective Communication: Students will be capable of preparing detailed delivering articulate oral presentations to effectively convey their resear- and implications to a departmental committee. 	state of knowledge in want, and researchable onceptualize and nonstrating initial ning preliminary the feasibility of their d written reports and
Module Name	Content	No. of Hrs.
	 Project – I includes following assignments. Survey and study of published literature on the assigned topic. Select and define an appropriate problem. Working out a preliminary approach to the Problem relating to the assigned topic. Conducting Preliminary Analysis/ Modeling/ Experiment/ Simulation/ Experiment/ Design/Feasibility. Preparing a Written Report on the Study conducted for presentation to the Department. Final Seminar, as oral Presentation before a Departmental Committee. 	3x16
	Total No. of Hours	48

Program Elective Courses

	Wireless Network and Mobile Computing (SET/CS/BT/E701)	
Course Objective	 To provide an in-depth understanding of the protocol architecture, physical layer, and cellular communication systems. To educate students on the structure, services, and protocols of GSM, including local and security mechanisms. To familiarize students with Mobile IP, including packet delivery, handover manager mobile transport layer protocols. To explore the concepts, challenges, and benefits of mobile computing, including ad to understand wireless LAN protocols and Bluetooth technology. To study the taxonomy, applications, and challenges of Mobile Ad Hoc Networks (M examine various routing protocols. 	ization, handover, nent, and various hoc networks, and
Course Outcome	 Students will understand the detailed protocol architecture and physical layer of cellu communications, and differentiate between WLAN and Bluetooth technologies. Students will gain comprehensive knowledge of GSM system architecture, including radio interface, protocols, handover mechanisms, and security features. Students will be proficient in the principles and functioning of Mobile IP, including phandover management, and mobile-specific transport layer protocols. Students will be able to explain the fundamental concepts, challenges, and benefits of computing and ad hoc networks, including an understanding of wireless LAN and Bl Students will have an advanced understanding of MANETs, including their taxonom and challenges, and will be able to implement and analyze various routing protocols s AODV, DSDV, CBRP, and TORA. 	mobile services, packet delivery, f mobile uetooth protocols. y, applications,
Module Name	Content	No. of Hrs.
Introduction to Cellular Communications	Protocol Architecture, Physical Layer, Channel Access Control Sub-layer, MAC Sub-layer, WLAN: Infrared vs. Radio Transmission, Infrastructure and Ad Hoc Networks, IEEE 802.11. Bluetooth.: User Scenarios, Physical Layer, MAC layer, Networking, Security, Link Management.	8
GSM	Mobile Services, System Architecture, Radio Interface, Protocols, Localization and calling, Handover, Security, and New Data Services	8
Mobile IP	IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunnelling and Encapsulation, Route Optimization, DHCP. Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols for Mobile Networks.	8
Overview of Ad Hoc Networks:	Ad Hoc Networks, Challenges, and benefits of Mobile Computing, breakthrough Technology, Wireless Computing, Nomadic Computing, Mobile Computing, Ubiquitous Computing, Pervasive Computing, Invisible Computing, applications of mobile computing, Wireless and Mobile Computing Models, LAN Protocols: IEEE 802.11/a/g/n & Bluetooth, Data Management Issues. Sensor Networks- Challenges, Architecture, and Applications.	8
Mobile Ad hoc Networks (MANETs)	Taxonomy, Applications, Challenges in Mobile Environments, Hidden and exposed terminal problems, Routing Protocols- Proactive, Reactive, and Hybrid protocols, Dynamic State Routing (DSR), Ad hoc On-Demand Distance Vector (AODV), Destination Sequenced Distance – Vector Routing (DSDV), and Cluster Based Routing Protocol (CBRP), and Temporally Ordered Routing algorithm (TORA).	10
Textbooks	Total No. of Hours 1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2004	42
References	 Charles E. Perkins, Ad hoc Networks, Addison Wesley, 2008. KazemSohraby, Daniel Minoli, TaiebZnati, Wireless Sensor Networks: Technology, Protocols, a Wiley, 2007. Raj Kamal, "Mobile Computing", Oxford University Press, 2007, 	nd Applications,

SECURIT	TY ARCHITECTURE & OPERATING SYSTEM SECURITY (SET/CS/	BT/E702)
Course Objective	 To provide a foundational understanding of information systems, database management systems, and the architecture of information security. To educate students on the security components of operating systems, user authentication methods, and email security protocols. To develop skills in user administration, password policies, and managing privileges and roles within database systems. To introduce various database application security models, including virtual private databases (VPD) and data encryption techniques. To explore methods for auditing database activities and implementing privacy-preserving data mining techniques. 	
Course Outcome	 Students will gain a comprehensive understanding of database security, asset valuation, and security methods, and will be able to identify and mitigate vulnerabilities within an operating system. Students will learn effective user administration practices, including creating, modifying, and managing user profiles, roles, and privileges, as well as designing and implementing robust password policies. Students will be familiar with different types of application security models, understand the implementation of virtual private databases, and apply data encryption techniques to protect sensitive information. Students will acquire the ability to audit database activities using various tools and techniques, understand the creation of DLL triggers, and perform security audits in both Oracle and SQL Server environments. Students will develop knowledge of privacy-preserving data mining algorithms, including randomization methods, group-based anonymization, and distributed privacy-preserving techniques, and will understand their applications in real-world scenarios. 	
Module Name	Content	No. of Hrs.
Introduction	Introduction-Information Systems- Database Management Systems-Information Security Architecture- Database Security–Asset Types and value-Security Methods Introduction-Operating System Overview-Security Environment – Components- Authentication Methods-User Administration-Password Policies-Vulnerabilities-E-mail Security	8
Administration of Users and Profiles, Password Policies, Privileges and Roles	Introduction-Authentication-Creating Users, SQL Server User-Removing, Modifying Users- Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices for Administrators and Managers-Best Practices Introduction-Defining and Using Profiles-Designing and Implementing Password Policies- Granting and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices	10
Database Application Security Models andVirtual Private Databases	Introduction-Types of Users-Security Models- Application Types-Application Security Models-Data Encryption Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server	8
Auditing Database Activities:	Using Oracle Database Activities-Creating DLL Triggers with Oracle-Auditing Database Activities with Oracle-Auditing Server Activity with SQL Server 2000-Security and Auditing Project Case Study	8
Privacy Preserving Data Mining		6
Techniques	Total No. of Hours	42
-	Total No. of Hours	
Textbooks	 Hassan A. Afyouni, "Database Security and Auditing", Third Edition, CengageLearning. Charu C. Aggarwal, Philip S Yu, "Privacy Preserving Data Mining": Modelsand Algorit Academic Publishers, 2008 Ron Ben Natan, "Implementing Database Security and Auditing", ElsevierDigital Press, 	, 2009. hms, Kluwer

	NEURAL NETWORK (SET/CS/BT/E703)	
Course Objective	 To provide a comprehensive understanding of the fundamental principl neurocomputing and neuroscience, including neuron models and learni To introduce data processing techniques essential for neural network at as scaling, normalization, transformation, and principal component ana To explore the architecture and training algorithms of multilayer percep basis function (RBF) networks, including accelerated learning methods To study recurrent networks, self-organizing maps, and advanced techn principal component and independent component analysis with applica signal processing. To examine the complexity of neural network models and their integrat computing techniques such as neuro-fuzzy and genetic algorithms. 	ng processes. pplications, such lysis. otrons and radial iques like tions in image and
Course Outcome	 Students will understand the historical context and foundational concept neurocomputing and neuroscience, including knowledge representation processes in neural networks. Students will gain proficiency in various data processing methods, inclutransformations, principal component analysis, and eigenvector technique neural network performance. Students will be able to design and implement multilayer perceptrons a apply backpropagation algorithms, and use heuristics to enhance algori 4. Students will acquire skills in working with recurrent networks, self-organd performing principal component and independent component analy applications in image and signal processing. Students will develop an understanding of the complexity of neural net learn to integrate these models with soft computing techniques for enhagolving capabilities in various domains. 	and learning uding ues, crucial for nd RBF networks, thm efficiency. ganizing maps, vsis, with practical work models and
Module Name	Content	No. of Hrs.
Neuro computing and Neuroscience	Historical notes, human Brain, neuron Model, Knowledge representation, Al and NN. Learning process: Supervised and unsupervised learning, Error correction learning, competitive learning, adaptation, statistical nature of the learning process	8
Data processing	Scaling, normalization, Transformation (FT/FFT), principal component analysis, regression, co-variance matrix, eigen values & eigen vectors. Basic Models of Artificial neurons, activation Functions, aggregation function, single neuron computation, multilayer perceptron, least mean square algorithm, gradient descent rule, nonlinearly separable problems and bench mark problems in NN.	10
Multilayer Perceptions And RBF networks	Multilayered network architecture, back propagation algorithm, heuristics for making BP-algorithm perorms better. Accelerated learning BP (like recursive least square, quick prop, RPROP algorithm), approximation properties of RBF networks and comparison with multilayer perceptran.	8
Recurrent network	Recurrent network and temporal feed-forward network, implementation with BP, self-organizing map and SOM algorithm, properties of feature map and computer simulation. Principal component and Independent component analysis, application to image and signal processing.	8
Complexity of neural network	Complex valued NN and complex valued BP, analyticity of activation function, application in 2Dinformation processing. Complexity analysis of network models. Soft computing. Neuro-Fuzzy-genetic algorithm Integration.	8 42
Books	Total No. of Hours 1. Kevin L. Priddy, Paul E. Keller – Artificial neural networks: An Introduction – SI 2. S. Raj sekaran, Vijayalakshmi Pari - Neural networks, Fuzzy logic and Genetic A	PIE Press, 2005
References	 G. J. Klir& T. A. Folger : Fuzzy sets, Uncertainty and Information. Simon Haykin : Neural Networks. B. Kosco : Neural Networks and Fuzzy systems: A Dynamical approach to Machi J. Hertz & Korgh : Introduction to the Theory of Neural Computation 	ne Intelligence.

	REAL TIME SYSTEM (SET/CS/BT/E704)	
Course Objective	 To provide an in-depth understanding of the characteristics and types of real-time tas their timing constraints and scheduling algorithms. To explore resource sharing, priority management, and handling task dependencies in systems, particularly in multiprocessor and distributed environments. To examine the features and functionalities of real-time operating systems (RTOS) a databases, including design issues and concurrency control. To study real-time communication requirements, models, and routing protocols in wit (WANs) and local area networks (LANs). To analyze the quality of service (QoS) requirements and protocols for real-time con packet-switched networks and ensure dependable real-time channels. 	n real-time nd real-time ide area networks
Course Outcome	 Students will understand the fundamental concepts of real-time scheduling, including event-driven, hybrid schedulers, and specific algorithms like EDF and RM schedulin Students will be able to manage resource sharing in real-time tasks, address priority i implement priority inheritance and ceiling protocols, and handle task dependencies in and distributed systems. Students will gain knowledge of the features and design issues of real-time operating databases, and understand the characteristics and applications of temporal data. Students will learn about the performance requirements, resource management, and r for real-time communication in wide area networks. Students will develop the skills to implement bounded access protocols for LANs, m communications over packet-switched networks, and meet QoS requirements for reli real-time communication. 	g. inversion, n multiprocessor s systems and routing protocols anage real-time
Module Name	Content	No. of Hrs.
Introduction	Characteristics – Types of Real-Time tasks – Timing constraints –Real-Time Scheduling - Basic concepts and classification of Algorithms – Clock-Driven Scheduling – Event-Driven Scheduling – Hybrid schedulers – EDF Scheduling – RM Scheduling and its Issues.	8
Resource Sharing and Dependencies among Real-Time Tasks	Resource sharing in Real Time tasks, Priority Inversion, Priority Inheritance Protocol, Highest Locker Protocol, Priority Ceiling Protocol, Handling Task dependencies – Scheduling Real- Time Tasks in Multiprocessor and Distributed Systems – Resource Reclaiming in Multiprocessor Real-Time Systems – Fault-Tolerant Task Scheduling in Multiprocessor Real- Time Systems.	10
Real-Time Operating System (RTOS)	Features of RTOS, Commercial Real-Time Operating Systems, Real-Time Databases - Applications, Design issues, Characteristics of Temporal Data, Concurrency control, Commercial Real-Time Databases	8
Real-Time Communication in Wide Area Networks	Introduction, Service and Traffic Models and Performance Requirements, Resource Management, Switching Subsystem, Route Selection in Real-Time Wide Area Networks - Basic Routing Algorithms, Routing during Real-Time Channel Establishment, Route Selection Approaches, Dependable Real-Time Channels	8
Real-Time Communication in a LAN:	Soft Real-Time Communication in a LAN – Hard Real-Time Communication in a LAN – Bounded Access Protocols for LANs – Real-Time Communications over Packet Switched Networks – QoS requirements – Routing and Multicasting	8
	Total No. of Hours	42
Textbooks	 C. Siva Ram Murthy and G. Manimaran, "Resource Management in Real-Time Sys 2. Jane W.S. Liu, "Real-Time Systems", Prentice Hall, 	stems
References	 Rajib Mall, "Real-Time Systems Theory and Practice", Pearson Education C.M. Krishna and Kang G. Shin, "Real-Time Systems", McGraw-Hill International 	1

	CLOUD COMPUTING (SET/CS/BT/E705)	
Course Objective	 To provide an understanding of the evolution, system models, and reference architec computing, including insights into various service models (IaaS, PaaS, SaaS) and de models (public, private, hybrid). To educate on virtualization technology, its definition, benefits, and implementation as its critical role in cloud computing infrastructure. To impart knowledge on networking support for cloud computing, including cloud r data center design, and interconnection networks, with a focus on the integration wi Things (IoT). To address cloud security challenges comprehensively, covering software-as-a-serv management, security monitoring, and implementing security measures for data, app virtual machines. To explore web-based cloud applications, examining the pros and cons of cloud ser development, and utilizing major cloud platforms like Amazon EC2, Google App E Clouds for practical application. 	eployment levels, as well reference models, th the Internet of ice security, risk plications, and vice
Course Outcome	 Students will be able to explain the evolution and system models of cloud computin NIST cloud computing reference architecture, and identify examples of IaaS, PaaS, providers. Students will understand virtualization technologies, including hypervisors such as and Xen, and will be capable of implementing virtualization for CPU, memory, I/O desktops, networks, and data centers. Students will grasp the necessary networking support for cloud computing, understa reference model, and design and interconnect data centers while integrating with Io⁴. Students will identify and address cloud security challenges, develop security gover management strategies, and implement robust security measures for data, applicatio machines within the cloud environment. Students will gain the ability to develop and deploy web-based cloud applications, e types of cloud services, and utilize development tools and services from major cloud enhancing their practical skills in cloud service development. 	and SaaS VMware, KVM, devices, servers, nd the cloud F. nance and risk ns, and virtual evaluate different
Madula Noma		No of Hug
Module Name	Content Evolution of Cloud Computing –System Models for Distributed and Cloud Computing –	No. of Hrs. 8
Introduction	NIST Cloud Computing Reference Architecture -IaaS – On-demand Provisioning – Elasticity in Cloud – E.g. of IaaS Providers - PaaS – E.g. of PaaS Providers - SaaS – E.g. of SaaS Providers – Public ,Private and Hybrid Clouds	0
Virtualization Technology	Definition, Understanding and Benefits of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor, VMware, KVM, Xen. Virtualization of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-center.	10
Networking Support for Cloud Computing	Ubiquitous Cloud and the Internet of Things. Cloud Computing Architecture: Cloud Reference Model, Layer and Types of Clouds, Services models, Data center Design and interconnection Network, Architectural design of Computer and Storage Clouds.	8
Security in the Cloud	Security Overview – Cloud Security Challenges – Software-as-a-Service Security – Security Governance – Risk Management – Security Monitoring – Security Architecture Design – Data Security – Application Security – Virtual Machine Security	8
Web-Based Cloud Application	Web-Based Application, Pros and Cons of Cloud Service Development, Types of Cloud Service Development, Software as a Service, Platform as a Service, Web Services, On- Demand Computing, Discovering Cloud Services, Development Services and Tools, Amazon Ec2, Google App Engine, IBM Clouds	8
	Total No. of Hours	42
Textbooks	 Raj Kumar Buyya, "Cloud Computing: Principles and Paradigms, wiley Barrie Sosinsky, "Cloud Computing Bible", Wiley Publishers 	
References	 John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Michael Miller, "Cloud Computing : Web-based Applications That Change The Way You Woo Online", Pearson Education 	rk and Collaborate

	COMPUTER VISION (SET/CS/BT/E706)	
Course Objective	 To introduce the fundamental concepts and scope of computer vision, including context and various applications across different fields. To provide a comprehensive understanding of image formation, representation image processing and analysis techniques, including image acquisition, enhancement and segmentation. To educate on feature description and matching techniques, and to delve into objet and recognition methodologies, enabling students to develop practical skills in the To cover the basics and advanced applications of deep learning in computer vision convolutional neural networks (CNNs), training methods, and the use of transfor improving model performance. To explore the ethical and social implications of computer vision technologies, or privacy concerns, algorithmic bias, and the responsible deployment of these technical statism. 	n, and basic ent, filtering, ect detection se areas. on, focusing sfer learning emphasizing
Course Outcome	 Students will gain a clear understanding of the scope, applications, and historical n computer vision, enabling them to appreciate its significance and evolution. Students will acquire practical skills in image formation, representation, and processing techniques, including the use of cameras and sensors for image acqu methods for enhancing and analyzing digital images. Students will develop the ability to describe and match features using techniques si SURF, and ORB, and will learn to implement object detection methods like Haar of the Viola-Jones framework. Students will be proficient in the fundamentals of deep learning for comp particularly in training convolutional neural networks (CNNs) for tasks suc classification and object detection, and will understand the application of transfer Students will be equipped to address the ethical and social implications of com technologies, ensuring they consider privacy, fairness, and responsible deployn professional practice. 	basic image uisition, and uch as SIFT, cascades and uter vision, h as image learning. puter vision
MODULE	CONTENT	No. of Hrs.
Introduction to Computer Vision	Definition and scope of computer vision, Overview of applications in various fields, Historical developments and milestones.	8
Image Formation and Representation and Image Processing and Analysis:	Basics of digital images: pixels, resolution, color models, Image acquisition: cameras, sensors, image formats, Image enhancement techniques: filtering, histogram equalization, Image Processing, and Analysis: Image filtering: convolution, Gaussian smoothing, edge detection, Feature extraction: corners, edges, blobs, Image segmentation: thresholding, region-based methods, contour detection.	10
Feature Description and Matching and Object Detection and Recognition	Local feature descriptors: SIFT, SURF, ORB, Feature matching techniques: nearest neighbor, RANSAC, Object Detection: Haar cascades for face detection, Viola-Jones object detection framework.	8
Deep Learning for Computer Vision	Basics of convolutional neural networks (CNNs), Training CNNs for image classification and object detection, Transfer learning and fine-tuning pretrained models.	8
Ethical and Social Implications:	Privacy concerns in computer vision systems, Bias and fairness in algorithmic decision-making, Ethical considerations in deploying computer vision technologies.	6
	Total No. of Hours	40
Text Books	 David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009 	
References	 E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011. 	

Semester VIII

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	Cana	SET/CS/BT/C801	UNIX Shell Programming	3	1		4	4
2	Core Subjects		Program Elective-5	3	1	-	4	4
3			Program Elective-6	3	1	-	4	4
4	Life Skills and personality development		Disaster Management	-	-	1	4	2
5	Skill Course	SET/CS/SC/C803	Project and Dissertation			1	12	6
		Total		9	3	2	28	20

S. No.	Category	Course Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		SET/CS/BT/E801	Natural Language Processing	3	1	-	4	4
2	Program	SET/CS/BT/E802	Internet of Things (IoT)	3	1	-	4	4
3	Elective-5	SET/CS/BT/E803	Machine Learning	3	1	-	4	4
4		SET/CS/BT/E804	Big Data Analytics	3	1	-	4	4
1			Cyber Security and Ethical Hacking	3	1	-	4	4
2	Program Elective-6		Mobile Application Development	3	1		4	4
3		SET/CS/BT/E807	Blockchain Technology	3	1		4	4
4		SET/CS/BT/E808	Deep Learning	3	1		4	4

	UNIX AND SHELL PROGRAMMING (SET/CSE//BT/C801)	
Course Objective Course Outcome	 To provide a comprehensive understanding of Unix user accounts, including the process of starting and shutting down processes, logging in and out, and basic command-line operations. To introduce students to shell programming in Unix, covering Unix file systems, file management commands, shell variables, and scripting techniques such as command substitution, functions, conditionals, and loops. To familiarize students with regular expressions and filters, including patterns, syntax, character classes, and quantifiers, and to demonstrate their practical application using tools like egrep, sed, awk, and perl. To equip students with the necessary knowledge and skills to work within the C environment in Unix, including understanding the C compiler, vi editor, project management, memory management, makefiles, static and dynamic libraries, and debugging with gdb. To explore advanced topics related to Unix processes, including process management, initialization processes, job control, network files, security, authentication, password administration, archiving, and handling signals and signal handlers. Students will be proficient in Unix user account management, process handling, and basic command-line operations, enabling them to navigate and operate within the Unix environment effectively. Students will have the ability to write shell scripts to automate tasks, manipulate files and directories, and customize their Unix environment using shell variables and scripting constructs. Students will be proficient in two rites shell scripts to automate tasks, manipulate files and directories, and customize their Unix environment using shell variables and scripting constructs. Students will demonstrate competence in using regular expressions and filters to search and manipulate text data efficiently, employing tools like egrep, sed, awk, and perl for text processing tasks. Students will be proficient	
Module Name	 a. Students will be protected in working within the electronomitent in only, including compiling and debugging C programs, managing projects with makefiles, and effectively utilizing static and dynamic libraries. 5. Students will have a deep understanding of Unix processes, job control mechanisms, security features, and signal handling, enabling them to develop robust and secure Unix-based applications. 	No. of Hrs.
Unix	User accounts, Unix – starting and shutting processes, Logging in and Logging out, Command line, simple commands.	8
Shell Programming	Unix file system, Unix files, inodes and structure and file system related commands, Shell as command processor, shell variables, creating command substitution, scripts, functions, conditionals, loops, customizing environment.	8
Regular Expressions and Filters	Introducing regular expressions patterns, syntax, character classes, quantifiers, introduction to egrep, sed, programming with awk and perl.	10
The C Environment	The C compiler, vi editor, compiler options, managing projects, memory management, use of make files, dependency calculations, memory management,	10

	dynamic and static memory, building and using static and dynamic libraries, using ldd, soname, dynamic loader, debugging with gdb.	
Processes	Processes, starting and stopping processes, initialization processes, rc and init files, job control – at, batch, cron, time, network files, security, privileges, authentication, password administration, archiving, Signals and signal handlers.	6
	Total No. of Hours	42
Text Books	1. Sumitabha Das, "Your Unix – The Ultimate Guide", TMH, 2000.	
References	 John Goerzen, "Linux Programming Bible", IDG Books, New Delhi, 2000. Mathew, "Professional Linux Programming", Vol.1 & 2, Wrox-Shroff, 2001. Welsh & Kaufmann "Running Linux", O'Reiley& Associates, 2000. 	

Program Elective Courses

	NATURAL LANGUAGE PROCESSING (SET/CS/BT/E80)	l)
Course Objective	 To introduce students to the field of Natural Language Understanding (NLU various applications such as machine translation and database interfaces. To familiarize students with the different levels of language analysis, include and pragmatics, and how these levels contribute to language understanding. To provide an understanding of the organization and components of Natural Understanding systems, including the linguistic background necessary for b To explore the fundamentals of semantics and knowledge representation in applications and challenges. To delve into the principles of grammars and parsing in natural language pr different parsing techniques and ambiguity resolution methods. 	ling syntax, semantics, l Language uilding such systems. NLU, including its
Course Outcome	 Students will gain a comprehensive understanding of the principles and app Language Understanding, enabling them to appreciate its importance in var Students will be able to evaluate and analyze language understanding syster strengths and weaknesses based on different evaluation metrics. Students will acquire the necessary knowledge and skills to perform different analysis, including syntax, semantics, and pragmatics, in the context of NLU Students will develop proficiency in designing and implementing grammars processing tasks, as well as utilizing parsing techniques to analyze and under input. Students will be able to address ambiguity in natural language processing the statistical methods, probabilistic language processing techniques, and semant enhancing the accuracy and robustness of NLU systems. 	ious real-world contexts. ns, identifying their nt levels of language J. for natural language erstand natural language prough the application of
Module Name	Content	No. of Hrs.
Introduction to Natural Language Understanding Introduction to	The study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English syntax Introduction to semantics and knowledge representation, Some applications like	8
semantics	machine translation, database interface.	
Grammars and Parsing	Grammars and sentence Structure, Top-Down and Bottom-Up Parsers, Transition Network Grammars, Top- Down Chart Parsing. Feature Systems and Augmented Grammars: Basic Feature system for English, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks	10
	Auxiliary Verbs and Verb Phrases, Movement Phenomenon in Language, Grammars. Human preferences in Parsing, Encoding uncertainty, Deterministic Parser.	8
Resolution	Statistical Methods, Probabilistic Language Processing, Estimating Probabilities, Part-of-Speech tagging, Obtaining Lexical Probabilities, Probabilistic Context- Free Grammars, Best First Parsing.Semantics and Logical Form, Word senses and Ambiguity, Encoding Ambiguity in Logical Form	8
Text Books	Total No of Hours 1. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective VIII"	42 ctive",
References	Prentice Hall 1. James Allen, "Natural Language Understanding", Pearson Education 2. D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education	

	INTERNET OF THINGS (IOT) (SET/CS/BT/E802)	
Course Objective Course	 INTERNET OF THINGS (IOT) (SET/CS/BT/E802) Provide an architectural overview of IoT systems, focusing on design princip standards considerations. Explore the fundamentals of M2M and IoT technologies, including devices, a data management, and analytics. Cover networking fundamentals specific to IoT, including protocols and layer network, transport, and session layers. Discuss data management and analytics techniques for IoT systems, includin preprocessing, storage, processing, visualization, and machine learning. Examine embedded systems used in IoT devices, programming languages, s vulnerabilities, and techniques to ensure secure IoT systems. 	gateways, networking, ers such as PHY/MAC, ng data collection,
Outcome	 Understand the architectural principles and capabilities required for design recognize the importance of standards in IoT development. Identify the components and technologies involved in M2M and IoT system networking protocols, and analytics methods. Demonstrate proficiency in networking fundamentals specific to IoT, includ layers used in IoT communication. Develop skills in data management and analytics for IoT, including collecting storing, processing, visualizing, and analyzing IoT data. Gain practical knowledge of embedded systems, programming languages, a to design and implement secure IoT solutions. 	s, including devices, ing protocols and g, preprocessing,
MODULE	CONTENT	No. of Hrs.
loT-An Architectural Overview:	Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service (XaaS), M2M and IoT Analytics, Knowledge Management.	8
Networking Fundamental of IOT	PHY/MAC Layer (3GPP MTC, IEEE802.11, IEEE 802.15), WirelessHART, ZWave, Bluetooth Low Energy, Zigbee Smart Energy, DASH7 - Network Layer-IPv4, IPv6, 6LoWPAN, 6TiSCH, ND, DHCP, ICMP, RPL, CORPL, CARP, Transport and Session Layer: Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)- (TLS, DTLS) – Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT.	12
Data Management and Analytics	Data collection, storage, and preprocessing, Real-time and batch processing, Data visualization techniques, Introduction to analytics and machine learning for IoT data.	6
Embedded Systems and Security of IOT	Introduction to microcontrollers (Arduino, Raspberry Pi, etc.), Sensors and actuators used in IoT devices, Programming embedded systems (C/C++, Python, etc.), Security: Threats and vulnerabilities in IoT systems, Authentication and access control, Encryption techniques, Privacy considerations and regulations.	8
Cloud Computing and Edge Computing and IOT Platform	Introduction to cloud platforms (AWS, Azure, Google Cloud, etc.), Edge computing concepts and architectures, Deployment strategies for IoT applications, IOT Platform: Overview of IoT platforms (IoTivity, ThingWorx, IBM Watson IoT, etc.).	8
	Total No. of Hours	42
Text Books	 Hakima Chaouchi, — "The Internet of Things Connecting Objects to the Wel 84821-140-7, Wiley Publications Olivier Hersent, David Boswarthick, and Omar Elloumi, — "The Internet of T Applications and Protocols", WileyPublications Vijay Madisetti and ArshdeepBahga, — "Internet of Things (A Hands-on-App VPT, 2014. J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly N Keysight Technologies, "The Internet of Things: Enabling Technologies and Solutions f Application Note, 2016. 	⁻ hings: Key proach)",1 st Edition, Aedia,2016.
References	 Daniel Minoli, — "Building the Internet of Things with IPv6 and MIPv6: The E Communications", ISBN: 978-1-118-47347-4, Willy Publications Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Tech 	-

	MACHINE LEARNING (SET/CS/BT/E803)	
Course Objective	 Define learning systems and explore their goals and applications within the learning. Examine the various aspects involved in developing a learning system, inc acquisition, concept representation, and function approximation techniques. Introduce logistic regression and other discriminative learning algorithms, in decision trees, and support vector machines. Discuss unsupervised learning techniques such as clustering, dimensionality variable models. Explore reinforcement learning and control methods, including Markov decisio Q-learning, and policy iteration. 	luding training data ncluding perceptron, reduction, and latent
Course Outcome	 Understand the fundamental concepts and objectives of learning systems an machine learning applications. Gain proficiency in acquiring and preprocessing training data, represer approximating functions for learning tasks. Identify and implement various discriminative and generative learning algorith and regression tasks. Apply unsupervised learning techniques to uncover patterns, clusters, and lat sets. Develop a comprehensive understanding of reinforcement learning algorithms a in decision-making and control tasks. 	nting concepts, and mus for classification ent variables in data
Module Name	Content	No. of Hrs.
Introduction	Definition of learning systems, Goals and applications of machine learning. Aspects of developing a learning system: training data, concept representation, function approximation. Definition of learning systems, Goals and applications of machine learning. Aspects of developing a learning system: training data, concept representation, function approximation. linear discriminative, non-linear discriminative, decision trees, probabilistic (conditional and generative), nearest neighbor	10
Logistic regression	Logistic regression, Perceptron, Exponential family, Generative learning algorithms, Gaussian discriminant analysis, Naive Bayes, Support vector machines: Optimal hyper plane, Kernels. Model selection and feature selection. Combining classifiers: Bagging, boosting (The Ada boost algorithm), Evaluating and debugging learning algorithms, Classification errors	12
Unsupervised learning:	Clustering, K-means. EM Algorithm. Mixture of Gaussians. Factor analysis. PCA (Principal components analysis), ICA (Independent components analysis), latent semantic indexing. Spectral clustering, Markov models Hidden Markov models (HMMs).	10
Reinforcement Learning and Control	MDPs. Bellman equations, Value iteration and policy iteration, Linear quadratic regulation (LQR). LQG. Q-learning. Value function approximation, Policy search. Reinforce. POMDPs	10
	Total No. of Hours	42
Text books	 Tom M Mitchell, Machine Learning, McGraw Hill Education. Duda, Richard, Pattern Classification. 2nd, Wiley India 	
References	 Tom M. Mitchell, Machine Learning . McGraw-Hill Series,. Introduction to Machine Learning – Ethem Alpaydin, MIT Press, Prentice hal 	l of India.

	BIG DATA ANALYTICS (SET/CS/BT/E804)		
Course Objective	 Provide an understanding of digital data types and the challenges of managing big data. Introduce the concepts and tools of big data analytics, including Apache Hadoop and IBM BigInsights. Explore the design and architecture of Hadoop Distributed File System (HDFS) and its interfaces. Familiarize students with MapReduce programming paradigm and its implementation in Hadoop. Introduce other big data processing tools like Pig, Hive, HBase, and Big SQL, along with their features and use cases. 		
Course Coutcome	 Understand the fundamentals of big data analytics, including the histo ecosystem. Gain proficiency in managing and analyzing data using Unix tools and Hado Develop skills in designing, implementing, and optimizing MapReduce jobs Learn to use Pig, Hive, HBase, and Big SQL for different data processing tas Explore machine learning techniques in big data analytics and understan supervised and unsupervised learning, as well as collaborative filtering. 	op. for data processing. sks and scenarios.	
Module Name	Content	No. of Hrs.	
INTRODUCTION TO BIG DATA AND HADOOP	Types of Digital Data, Introduction to Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, Analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere Big Insights and Big Sheets	8	
HDFS(Hadoop Distributed File System)	The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures	10	
Map Reduce	Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task Execution, Map Reduce Types 0and Formats, Map Reduce Features	8	
Hadoop Eco System	Pig : Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators. Hive : Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Databases, HiveQL, Tables, Querying Data and User Defined Functions. Hbase :HBasics, Concepts, Clients, Example, Hbase Versus RDBMS. Big SQL : Introduction	8	
Data Analytics with R	Machine Learning : Introduction, Supervised Learning, Unsupervised Learning, Collaborative Filtering.Big Data Analytics with BigR.	8	
	Total No. of Hours	42	
Textbooks	 Big data,BlackBook:Covers Hadoop 2,map reduce,Hive,YARN,PIG,R and data Dreamtech, Wiley India Seema Acharya, "Big Data Analytics" Wiley 2015. 	Visualization,	
References	3. Tom Plunkett, Mark Hornick, "Using R to Unlock the Value of Big Data: Big Data REnterprise and Oracle R Connector for Hadoop", McGraw-Hill/Osborne Media		

	CYBER SECURITY AND ETHICAL HACKING (SET/CS/BT/E	805)
Course Objective	 Provide an introduction to hacking, including its types and processes, and the basics of security. Establish a foundation for ethical hacking techniques, covering methodologies and various attack vectors. Explore web application security, including core defense mechanisms and techniques for managing and securing web applications. Examine hacking techniques specific to wireless networks, including sniffing, spoofing, and denial of service attacks. Discuss the applications of hacking techniques in various scenarios, such as firewall engineering, secure communications, and mobile hacking. 	
Course Outcome	 Understand the fundamentals of hacking, including its various types and the importance of security. Gain proficiency in ethical hacking methodologies, including social engineering, password hacking, and network penetration testing. Develop skills in identifying and mitigating web application security vulnerabilities. Acquire knowledge of hacking techniques specific to wireless networks and best practices for securing wireless LANs. Learn about the applications of hacking techniques in real-world scenarios and the legal and ethical considerations involved. 	
Module Name	Content	No. of Hrs.
BASICS OF HACKING	Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, ExploitationWebBased Exploitation.	6
ETHICAL HACKING TECHNIQUES	Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, Enumeration.	9
WEB APPLICATIONS SECURITY	Evolution of Web applications, Web application security, Core DefenseMechanisms, Managing the Application, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting CodeInjecting into SQL, Attacking Application Logic.	9
HACKING TECHNIQUES IN WIRELESS NETWORKS	Introduction to Wireless LAN Overview, Wireless Network Sniffing, WirelessSpoofing, Port Scanning, Wireless Network Probing, AP Weakness, Denial of Service (DOS), Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II.	9
HACKING TECHNIQUES APPLICATIONS	Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile HackingBluetooth-3Gnetwork weaknesses, Case study: DNS Poisoning, Hacking Laws	9
I	Total No. of Hours	42
Textbooks	 Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: NetworkS Solutions", Seventh edition, McGraw-Hill Publisher 	ecurity Secrets &
References	 Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmi publishers India Ltd, 2006 Ankit Fadia, "How to Unblock Everything on the Internet" Vikas PublishingHo 	

	MOBILE APPLICATION DEVELOPMENT(SET/CS/BT/E806))
Course Objective	 Introduce students to mobile application development, focusing on Java techn applications. Provide an in-depth understanding of the Android platform, its features, archit versions. Familiarize students with Android Studio, the development environment, and Android Debug Bridge (ADB). Cover the basics of Android application framework, including resource layout activity life-cycle. Enable students to design user interfaces for Android applications using differ and Material Design principles. 	tecture, and various essential tools like the t, manifest file, and
Course Outcome	 Gain proficiency in developing Android applications using Java technology, s to advanced concepts. Understand the architecture and features of the Android platform and its evoluversions. Acquire practical skills in using Android Studio for application development a emulators. Learn various techniques for data persistence in Android applications, includin file handling, and SQLite database management. Develop the ability to implement background processes, networking, telephon multitasking in Android applications using services, threads, and broadcast recommendations. 	ation through different and setting up ng shared preferences, ny services, and
Module Name	Content	No. of Hrs.
JAVA TECHNOLOGY FOR RICH CLIENT APPLICATIONS ANDROID User Interface Design	Introduction to mobile application development, trends, introduction to various platforms, introduction to smart phones. Android platform features and architecture, versions, comparison added features in each version. ART (Android Runtime), ADB (Android Debug Bridge). Android studio and its working environment, grade build system, emulator setup. Application framework basics: resources layout, values, asset XML representation and generated R.Javafile, Android manifestfile. Creating a simple application GUI for Android: Introduction to activities, activities life-cycle, and Android v7 support library form API21 for lower version support. Intent object, intent filters, adding categories, linking activities, user interface design components Views and View Groups: Basic views, picker views, adapter views, Menu, AppBar etc., basics of	10
	screen design; different layouts. App widgets. Lollipop Material design: new themes, new widgets, Card layouts. Recycler View ,Fragments: Introduction to activities, activities life-cycle.	-
DATA PERSISTENCE	Different Data persistence schemes: Shared preferences, File Handling, Managing data using SQLite database Content providers: user content provider, Android in build content providers.	8
BACK GROUND RUNNING PROCESS, NETWORKING AND TELEPHONY SERVICES	Services: introduction to services – local service, remote service and binding the service, the communication between service and activity, Intent Service Multithreading: Handlers ,Async Task, Android network programming :Http Url Connection, Connecting to REST based and SOAP based Web services Broad cast receivers: Local Broadcast Manager, Dynamic broadcast receiver, System Broadcast. Pending Intent, Notifications, Telephony Manager: Sending SMS and making calls.	12
		42
Textbooks Reference Books	 Lee," Beginning android 4 application development "ISBN 9788126535576 Wi Greg Milette, Adam Stroud, "PROFESSIONAL Android™ Sensor Programming Paul Deital, Harvey Deital, Alexander Wald, "Android 6 for Programmers ,App D Prentice Hall Dutson"Android Development Patterns: Best Practices for Professional Develope 	", John Wiley Driven approach", 2015,

	BLOCKCHAIN TECHNOLOGY (SET/CS/BT/E807)	
Course Objective	 To provide an understanding of blockchain technology, including characteristics, and types, as well as the basics of cryptography. To explore the architecture of blockchain systems, including their decentralization, consensus mechanisms, and scalability challeng. To introduce Bitcoin and other cryptocurrencies, covering their un technologies, transactions, mining, wallets, and differences. To delve into Ethereum and smart contracts, including the Ethere decentralized applications (DApps), Solidity programming language smart contracts. To familiarize students with Hyperledger Fabric development, inc architecture, chaincode development, membership services, and Fabric networks. 	r components, es. nderlying eum platform, ge, and testing cluding its
Course Outcome	 Students will gain a comprehensive understanding of blockchain to cryptography basics, enabling them to appreciate the principles undecentralized systems and secure transactions. Students will be able to analyze blockchain architectures, identify and evaluate different consensus mechanisms and scalability solutional evaluate different functionalities and distinguishing characterized systems their functionalities and distinguishing characterized systems will acquire practical skills in Ethereum development, in development environment, writing smart contracts in Solidity, and the Ethereum network. Students will be proficient in Hyperledger Fabric development, and deploy, and interact with Fabric networks, including writing chain managing membership services. 	underlying their components, utions. cryptocurrencies, acteristics. cluding setting up a ind interacting with ole to design,
MODULE	CONTENT	No. of Hrs.
Introduction to Blockchain and Cryptography Basics	What is Blockchain, History and evolution of blockchain technology, Characteristics of blockchain, Types of blockchains: public, private, and consortium, Use cases and applications of blockchain technology, Cryptography: Introduction to cryptography, Hash functions and cryptographic hashing, Public key cryptography, Digital signatures and certificates, Merkle trees and their role in blockchain.	8
Blockchain Architecture	Components of a blockchain: blocks, transactions, nodes, Decentralization and distributed consensus, Understanding blockchain networks, Blockchain protocols: Proof of Work (PoW), Proof of Stake (PoS), etc., Blockchain scalability challenges and solutions.	6
Bitcoin and Cryptocurrencies	Overview of Bitcoin and its underlying technology, Bitcoin transactions and mining, Bitcoin wallets and addresses, Other cryptocurrencies and their differences from Bitcoin.	6
Ethereum and Smart Contracts	Introduction to Ethereum platform, Ethereum Virtual Machine (EVM), Decentralized applications (DApps), Setting up Ethereum development environment, Introduction to Truffle framework, Smart Contracts: Smart	10
	contracts: definition, features, and applications, Solidity programming language, interacting with smart contracts using web3.js, Testing smart contracts.	
Hyperledger Fabric Development	language, interacting with smart contracts using web3.js, Testing smart	10

Text Books	1. Mark Gates, "Block chain: Ultimate guide to understanding block chain, bit coin, crypto currencies, smart contracts and the future of money", Wise Fox Publishing and Mark Gates 2017.
	 Salman Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, "Hands-On Block chain with Hyper ledger: Building decentralized applications with Hyperledger Fabric and Composer", 2018. Bahga, Vijay Madisetti, "Block chain Applications: A Hands-On Approach", Arshdeep Bahga, Vijay Madisetti publishers 2017.
References	1. Andreas Antonopoulos, "Mastering Bitcoin: Unlocking Digital Crypto currencies",
	O'Reilly Media, Inc. 2014. 2. Melanie Swa, "Block chain ",O'Reilly Media 2014

DEEP LEARNING (SET/CS/BT/E808)				
Course Objective	 To provide an overview of deep learning, including its historical context, evolution, and applications across various domains. To cover the fundamentals of neural networks, including feedforward networks, activation functions, loss functions, and optimization algorithms. To introduce convolutional neural networks (CNNs) and recurrent neural networks (RNNs), along with their architectures, training techniques, and applications. To explore generative adversarial networks (GANs) and reinforcement learning (RL), including their architectures, training methods, and real-world applications. To delve into autoencoders and variational autoencoders (VAEs), discussing their principles, variants, and applications in dimensionality reduction and anomaly detection. 			
Course Outcome	 Students will gain a comprehensive understanding of deep learning principles, frameworks, and applications, enabling them to appreciate its significance in solving real-world problems. Students will be proficient in designing and training neural networks, understanding the importance of activation functions, loss functions, and optimization algorithms in model performance. Students will have practical experience with convolutional neural networks and recurrent neural networks, capable of implementing and optimizing these architectures for image analysis, sequence modeling, and natural language processing tasks. Students will be familiar with generative adversarial networks and reinforcement learning techniques, equipped to apply these methods in various domains such as image generation, style transfer, and game playing. Students will understand the concepts of auto encoders and variation auto encoders, able to apply them for tasks like dimensionality reduction and anomaly detection, thereby enhancing their skills in unsupervised learning techniques. 			
MODULE	CONTENT	No. of Hrs.		
Introduction to Deep Learning	Overview of artificial neural networks (ANNs), Historical context and evolution of deep learning, Applications of deep learning in various fields, Introduction to deep learning frameworks (Tensor Flow, PyTorch, Keras, etc.)	8		
Fundamentals of Neural Networks and Training Deep Neural Networks	Basics of feed forward neural networks, Activation functions and their properties, Loss functions for regression and classification tasks, Optimization algorithms (Gradient Descent, Adam, RMSProp, etc.) Deep Neural Network: Back propagation algorithm, Vanishing and exploding gradients problem, Weight initialization techniques, Batch normalization and regularization methods.	10		
Introduction to Convolutional Neural Networks (CNNs) and Recurrent	Introduction to CNNs, Convolutional layers, pooling layers, and activation functions, Architecture of popular CNN models (LeNet, AlexNet, VGG, ResNet, etc.), Transfer learning with pre-trained CNNs, Introduction to RNNs, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), Applications of RNNs in	10		

Neural Networks	sequence modeling, time series analysis, and natural language processing,	
(RNNs)	Training and optimizing RNNs.	
Generative	Introduction to GANs, Architecture of GANs (Generator, Discriminator), Training	10
Adversarial	GANs and common challenges (mode collapse, instability), Applications of GANs	
Networks (GANs) and	in image generation, style transfer, etc, RNN: Introduction to reinforcement	
Introduction to	learning (RL), Markov Decision Processes (MDPs) and the RL framework, Q-	
Reinforcement	learning, Policy Gradient methods, Deep Q-Networks (DQN) and Deep	
Learning	Deterministic Policy Gradient (DDPG).	
Autoencoders and	Introduction to autoencoders, Variants of autoencoders (Sparse autoencoders,	8
Variational	Denoising autoencoders), Introduction to VAEs and generative modelling,	
Autoencoders (VAEs)	Applications of autoencoders and VAEs in dimensionality reduction, anomaly	
	detection, etc.	
Total No. of Hours		46
Text Book	1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning.	An MIT Press book.
	2016.	
	2. Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Sp	oringer. 2019.
Reference	1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning.	An MIT Press book.
	2016.	
	2. Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Sp	oringer. 2019.