Structure of Course & Syllabus of B. Tech. (UG Programme) Department of Mechanical Engineering

(As per National Education Policy-2020)

Department of Mechanical Engineering School of Engineering and Technology, H. N. B. Garhwal University, Srinagar Garhwal, Uttarakhand- 246174

Semester- wise List of Subjects (As per NEP 2020)

Semester I

S. No.	Category	Course Code	Course Code and Title	L	T	P	Contact Hrs./Week	Credits
1	Basic	SET/SH/BT/C101	Mathematics I	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C102	Physics	3	1	- 1	4	4
3	Core Basic	SET/EE/BT/C103	Basic Electrical Engineering	3	1	ı	4	4
4	Engineering	SET/EC/BT/C104	Basic Electronics	3	1	1	4	4
5	Subjects	SET/IT/BT/C105	Fundamental of Information Technology	3	1		4	4
6	Core/Basic	SET/SH/BT/C107	Physics Lab			1	2	1
7	Subjects Based Labs	SET/ME/BT/C108	Engineering Graphics and Workshop Practice			1	2	1
8	Extracurricular Courses/CC	AECC106	Connecting student with environment *	2	-	-	2	2
9	Skill Course		Machining Practice Lab-I (Skill Enhancement Course)	-	-	1	4	2
		Total		17	5	3	30	26

^{*}University will prepare a course with focus on connecting student with environment to make student more environment sensitive.

Semester II

S. No.	Category	Course Code	Course Code and Title	L	T	P	Contact Hrs./Week	Credits
1	Basic	SET/SH/BT/C201	Mathematics II	3	1	-	4	4
2	Science/Multidi sciplinary	SET/SH/BT/C203	Chemistry	3	1	-	4	4
3	Core Basic	SET/ME/BT/C204	Engineering Mechanics	3	1	-	4	4
4	Engineering Subjects	SET/ME/BT/C202	Basic Mechanical Engineering	3	1	-	4	4
5	3	SET/CS/BT/C205	C Programming	3	1		4	4
6	Core/Basic	SET/SH/BT/C208	Chemistry Lab	-		1	2	1
7	Engineering Subjects Labs	SET/CS/BT/C209	C Programming Lab			1	2	1
8	Life Skills and personality development	AECC206	Life Skills and personality development#	2	ı	-	2	2
9	Skill Course	SET/ME/SC/C210	Machining Practice Lab-II (Skill Enhancement Course)	-	-	1	4	2
Total 17							30	26

#University will prepare the course on Life skills and personality development, which will focus on the subjects such as stress management through Yoga, teamwork, cooperation, work ethics and personality development issues.

	SET/SH/BT/C101 MATHEMATICS- I	
Course Objective	To provide essential knowledge of basic tools of Differential Calculus, and Matrix Algebra for engineering students.	Vector Calculus
Course Outcome	Implementation of calculus in designing the different structural a components while matrix algebra is applied in the study of electrical cimechanics and optics.	
Module Name	Content	No. of Hrs.
Differential Calculus	Limit, continuity and differentiability of single and two variables, mean value theorems, indeterminate forms; partial derivatives, total derivative, Euler's formula, Taylor series (in one and two variables), maxima and minima, Extrema of function of several variables, Lagrange"s method.	15
Vector Calculus	Interpretation of vectors and scalars, directional derivatives, line, surface and volume integrals, gradient, divergence and curl of a vector and their physical interpretation, Gauss's divergence, Green's and Stoke's theorem.	12
Matrices	Vector space, basis, matrices, determinants, Elementary row and column transformation, linear dependence and independence, rank of matrix, consistency of system of linear equation and solution of linear system of equations. Characteristic equation, Cayley-Hamilton theorem, eigen values and eigen vectors, diagonalization, complex matrices.	15
	Total No. of Hrs.	42
Textbooks	1. R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mather Publications,	matics", Narosa
	2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers,	
	3. H K Das, "Advanced Engineering Mathematics", S Chand,	
	4. Erwin Kreyszig, "Advanced Engineering Mathematics".	

SF	ET/SH/BT/C102 PHYSICS	
Course Objective	1. To introduce the student to the basic of wave optics, lasers, and demo	nstrate their
Course Objective	applications in technology.	
	2. To make students aware about quantum physics phenomena.	
	3. Give the beginning student an appreciation of recent developments	in materials
	science & engineering within the framework of this class.	
	4. To review physics in the context of materials science & engineering.	
	5. Give an introduction to the relation between processing, structure, a	nd physical
	properties.	
	6. To make the students aware about Electromagnetic wave fundamentals.	
Course Outcome	1. Demonstrate interference, diffraction and polarization of light and	explain the
Course Outcome	working principle of Lasers.	
	2. Student will understand quantum mechanical aspects of physics.	
	3. Enable to explain the phenomenon of crystal structure and crys	tallographic,
	qualitatively description of X-ray diffraction and its generalphysical p	roperties, as
	well as possible applications.	
	4. Students will understand the phenomenon of defects in solids and the	eir physical
	properties, band theory of solids and classification of energy bands,	electric and
	magnetic properties of solids and able to explain qualitative	e idea of
	superconductivity in materials.	
	5. This will enable the students to learn physical concepts asso	ciated with
	electromagnetic radiation and devices.	
	6. Use Maxwell's equations to describe propagation of EM waves in a med	dium.
Module Name	Content	No. of Hrs.
	Interference: Coherent Sources, Conditions of Interference, Fresnel's	15
0.4:	Biprism Experiment, Interference in Thin Films, Newton's Rings; Single and	
Optics	n-Slit Diffraction, Diffraction Grating, Raleigh's Criterion of Resolution,	
	Resolving Power of Telescope, Phenomenon of Double Refraction, Ordinary	
	and Extra-ordinary Rays,	
	NicolPrism,CircularlyandEllipticallyPolarizedLight,FresnelTheory, Optical	
	Activity, SpecificRotation; Laser: Principle of Laser Action, Einstein's	
	Coefficients, Construction and Working of He-Ne and Ruby Laser,	
	Applications of Laser.	
	Black body radiation, Planck's Radiation Law, Wave Particle Duality, de-	10
Quantum Mechanics and	Broglie hypothesis, Photoelectric effect, Wave Function and its	
its Applications	Normalization, Born Interpretation, Schrodinger equation, Particle in a Box,	
Tr	Potential Step (E < Vo), Tunneling effect (Qualitative idea).	
Basics	Introduction to crystal structure of materials, Miller indices for	15
Material	crystallographic planes and directions. Diffraction of X-Rays, Bragg's Law,	
Science	Determination of crystal structure using X-rays Diffraction and its	
	applications. Defects in solids: point, line and planar defects and their effect	
	on properties of materials. Band theory of solids, conductors, semi-	
	conductors and insulators, metals. Fermi Level. Magnetism: dipole moments,	
	paramagnetism, Curie's law, magnetization and hysteresis, Ferromagnetism	
	and Anti- Ferromagnetism. Ferro electricity and Piezoelectricity.	
	Superconductivity in materials.	
Electromagneti	Ampere's Law and Displacement Current, Maxwell's Equations in Integral	8
cs	and Differential Forms, Electromagnetic Wave Propagation in Free Space and	
	Conducting Media, Poynting Theorem.	
Lange Total No. of Hour	, ,	48
		.0

Textbooks	1.	Gaur, Gupta, "EngineeringPhysics"
	2.	CallisterW.D., "MaterialsScienceandEngineering:Anintroduction",6thEdition,John Wiley
		& Sons Inc., New York2002.
References	1.	J. R. Taylor, C.D. Zafiratos and M. A. Dubson, Modern Physics for Scientists and
		Engineers,2nd Pearson
	2.	Arthur Beiser, Concepts of Modern Physics, 6th Ed., TMH,(2009)
	3.	D.J. Griffith :Electrodynamics
	4.	Charles Kittel, Introduction to Solid State Physics,
	5.	S.O. Pillai, Solid State Physics,
	6.	AjoyGhatak- Optics

	SET/EE/BT/C103 BASIC ELECTRICAL ENGINEERING	
Course Objective	 To impart basic knowledge of electrical quantities and provide working knowledge for the an and AC circuits. 	nalysis of DC
	2. To understand the construction and working principle of DC and AC machines.	
	3. To understand the construction and working principle of various instruments.	
	4. To understand the construction and working principle of 3- phase supply system.	
Course	1. Understand the basic electric and magnetic circuits.	
Outcome	2. Analyze DC and AC circuits.	
	3. Interpret the construction and working of different types of electrical machines and instruments	S.
	4. Analyze basic electrical components and circuits.	
Module Name	Content	No. of Hrs.
DC Networks	Concepts of linear, nonlinear, active, passive, unilateral and bilateral elements; Ideal and practical voltage & current sources, conversion from one from the other; Kirchhoff's laws, statements; Mesh Analysis; Nodal Analysis; Delta-Star & Star-Delta conversion; Superposition principle; Thevenin's theorem, statement, advantages in case of complex networks; explanation & illustration with examples; Norton's theorem, Maximum power transfer theorem, Reciprocity Theorem and its application.	10
Single Phase AC Circuits	Generation of single phase AC voltage and determination of average (mean) and RMS (effective) values of voltage and current with special reference to sinusoidal waveforms; Form factor and peak factor for various waves; Representation of sinusoidal time varying quantities as phasors; concepts of reactance, impedance and their representation in complex forms using j operator; Steady state analysis of series R-L-C circuit & its phasor diagram; Concept of power & power factor; Concept of admittance, susceptance in parallel circuits; Analysis of series parallel circuits & phasor diagrams;	10
Three Phase Circuits	Resonance in series and parallel circuits. Generation of 3-phase balanced sinusoidal voltage; star & delta connections; line & phase quantities (current & voltage); Solution of 3-phase star/delta circuits with balanced supply voltage and balanced load; phasor diagram; 3-phase, 4-wire circuits; Measurement of three phase power by two wattmeter method; phasor diagram with balanced load and determination of load power factor from wattmeter reactions.	6
Transformer s and Rotating Machines	readings. Transformers: Constructional features and principle of operation, concept of ideal transformer under no load & loaded conditions and its equivalent circuit; Practical transformer rating & its equivalent circuit; Autotransformer – principle of operation & relative advantages & disadvantages; Rotating Machine: construction features (stator, rotor & air gap), conditions for production of steady electromagnetic torque; Three phase Induction motor: constructional features and operation; DC Machines: construction features, EMF and Torque expression, Classification of DC motors and generators; Stepper motor.	12
Measuring Instruments	DC PMMC instruments – constructional feature and principle of operation; Moving iron meters construction and principle of operation; Dynamometer type wattmeter; Induction type energy meter construction & principle of operation.	6
	Total No. of Hours	44
Textbooks	1. I.J. Nagrath, "Basic Electrical Engineering," Tata Mc. Graw Hill.	•
References	 A. E. Fitgerald, D.E., Higginbotham and AGrabel, "Basic Electrical Engineering", Mc Graw Hill. Rizzoni, Principles and Applications of Electrical Engineering, TMH. V. Del Toro. "Principles of electrical Engineering, "Prentice hall. W.H. Hayt& J.E. Kemmerly," Engineering circuit Analysis, "Mc Graw Hill. 	
	5. H. Cotton, "Advanced Electrical Technology" Wheeler Publishing.	

	SET/EC/BT/C104 Basic Electronics	
Course Objective	To familiarize the students with electronics field. To introduce semiconductor fuelectronic devices, and elementary electronic circuits. To familiarize students with and gates.	h digital logics
Course Outcome	 Understand the working and current voltage characteristics of semiconductor of diodes and transistor. Perform dc analysis of amplifier circuits. Design basic OP AMP circuits. Understand and use basic digital electronic concepts. 	levices e.g.
Module Name	Content	No. of Hrs.
Semiconductor Diodes	Semiconductor materials- intrinsic and extrinsic types, Ideal Diode as a switch, Terminal characteristics, and equivalent circuit of PN diode: p-n junction under open circuit condition, p-n junction under forward bias and reverse bias conditions, p-n junction in breakdown region; Zener diode and basic voltage regulator using Zener diode; Rectifier Circuits, Clipping and Clamping circuits; LED, Photo Diode.	10
Bipolar Junction Transistors	Physical structure, physical operation and current-voltage characteristics of NPN transistor; Use of Voltage-dependent Current source as a Voltage amplifier; Transistor as an amplifier: Characteristics of CE amplifier; Active region operation of transistor; D.C. analysis of Common Emitter Amplifier: load line analysis; Transistor as a switch: cut-off and saturation modes.	10
Field Effect Transistor	Enhancement-type MOSFET: structure and physical operation, current-voltage characteristics; MOSFET as a Switch, MOSFET as a Voltage-dependent Current source and Common Source Amplifier.	8
Operation Amplifier	Ideal Op-amp; Properties of the ideal Operational Amplifier; op-amp application circuits (assuming ideal op amp): inverting amplifier, non - inverting amplifier, weighted summer, integrator, and differentiator.	6
Digital Logic and Gates	Binary, octal, and hexadecimal number systems; Methods of base conversions; Binary, octal, and hexadecimal arithmetic; Representation of signed numbers; Basic logic operations and logic gates; MOSFET Switch Implementation of Logic Gates, e.g., Inverter, NAND, NOR. Basic postulates and fundamental theorems of Boolean algebra.	8
	Total No. of Hours	42
Textbooks	Agarwal, Anant; Lang, Jeffrey H, "Foundations of Analog and Digital Elec Elsevier Science & Technology Books.	tronic Circuits",
References	 V. Del Toro, Principles of Electrical Engineering, PHI. Rizzoni, Principles and Applications of Electrical Engineering, TMH. Malvino, Electronic Principles. R.L.Boylestad&L.Nashelsky, Electronics Devices & Circuit Theory, PHI. Sedra, Smith, "Microelectronic Circuits", Oxford University Press. 	

SET/IT/BT/	C105 Fundamentals of Information Technol	ogy
Course Objective	Take on significant positions In various IT work	
	2. Collaborate in diverse team environments	
	3. Contributions in the field of IT	
	4. Work effectively in the IT field to make a positive contribution to society	
Course Outcome	 Develop information technology solutions by evaluating user requirements in the s development environment. 	systems
	2. Apply knowledge of IT requirements for technology solutions in cutting edges app	olications.
	Analyze a problem and identify and define the computing requirements for the appropriate solutions.	propriate
	Create, select and apply appropriate techniques, resources, and modern engineerin tools.	g and IT
Module Name	Content	No. of Hrs.
Introduction	Definition of Electronic Computer, Generations, Classification of Computers, Computer Hardware and Basic Computer Organization: CPU- ALU, CU; RAM/ROM, Various I/O devices, Peripherals, Storage Media	4
Computer Languages	Binary, Hexadecimal Number System; Basic Binary Logic Operations; Binary Addition and Subtraction; Generation of Languages, Assembly Language, High level language; Translators, Interpreters, Compilers, Compilers; Flow Charts, Dataflow Diagram,	6
OS & Office	Software- System and Application Software; Elementary Concepts in Operating System; Textual Vs GUI, Introduction to DOS, MS Windows, UNIX/Linux	4
Computer Networks	Elements of Communication system; Brief Introduction to Computer Networks- Introduction of LAN and WAN. Network Topologies, Client-server Architecture, IoT, Cloud Computing	6
Internet	Internet & World Wide Web, Hypertext Markup Language, DHTML, Python, WWW, Gopher, FTP, Telnet, Web Browsers, Net Surfing, Search Engines, Email; Introduction to Web Development, Static and Dynamic Pages	6
IT Application and Multi media	Basic Awareness of NICNET and ERNET; E Commerce, E governance; Brief Introduction to Different Formats of Image, Audio, Video	6
Information Concepts & Processing	Definitions of Information, Need of information, quality of information, value of information, concept of information, Entropy category and Level of information in Business Organization, Data Concepts and Data Processing, Data Science, Data	8
,	Representation, Application of IT to E-commerce, Electronic Governance, Multimedia, Entertainment, Introduction to Information System.	
	Total No. of Hours	40
	 Sinha, Sinha, "Computer Fundamentals", Yadav R. P., "Information Technology" 	
	1. D S Yadav, "Foundations of IT", New Age, Delhi	
	2. Rajaraman, "Introduction to Computers", PHI	

ENVIRONMENTAL SCIENCE

As per University Proposal and Approval

	SET/SH/BT/C107 PHYSICS LAB	
Course Object	ive To make students aware about experimental verification behind the theory, familiarize the	student
	to the basic of spectroscopy, lasers, and semiconductor lab experiment and demonstrate the	eir
	applications. Give the brief introduction about the Planck's constant, Hall Effect, Ohm's la	ıw,
	Thomson's experiment, conversion of Galvanometer to Voltmeter and Ammeter and unkr	nown
	resistance using post office box.	
Course Outcon	1 1	ne practical
	knowledge of various theory part.	.4:
	Student will enable to find the refractive index of material, wavelength of monochrom of light.	auc source
	3. Enable to find the efficiency of electric kettle, band gap of materials, behaviour of sen	niconductor.
	charge density and hysteresis curve in ferromagnetic materials	,
Sr. No.	Experiments	No. of
1.	To determine refractive index of glass and liquid using spectrometer.	Hrs.
1.	To determine remactive index of glass and figure using spectrometer.	1 X Z
2.	To determine the wavelength of spectral lines using plane diffraction grating (Use Hg	1x2
	source).	
3.	To determine the wavelength of sodium light by Newton's Ring method.	1x2
4		12
4.	To measure an accessible (Horizontal and vertical) height using sextant.	1x2
5.	Determination of wavelength of He-Ne laser using single slit /N slit diffraction pattern.	1x2
6.	To study the photoelectric effect and determine the value of Planck's constant.	1x2
7.	To determine the heating efficiency of an electric kettle with varying voltage.	1x2
8.	To Determine the wavelength of the semiconductor diode laser.	1x2
9.	Measurement of forward/reverse saturation current in p-n-junction diode at various	1x2
	temperatures and to find the approximate value of energy gap.	
10.	To study the Hall effect and determine Hall coefficient, carrier density and mobility of	1x2
	a given semiconductor material.	
11.	To draw hysteresis curve of a given sample of ferromagnetic material and from this to	1x2
	determine magnetic susceptibility	
12.	Measurement of e/m of electron e/m- Thomson's Experiment	1x2
13.	To verify Ohm's law.	1x2
13.	_	1 1 1
14.	Conversion of Galvanometer into Voltmeter and Ammeter.	1x2
15.	To determine the unknown resistance by a post office box.	1x2
	Total No. of Hours	30
References	1. Practical Physics, C.L. Arora, S. Chand & Co.	
	2. Engineering Practical Physics, S.Panigrahi&B.Mallick, 2015, Cengage Learning India Pr	vt. Ltd.
	3. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publish	
	House.	
	4. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, repr	rinted
	1985, Heinemann Educational Publishers.	
	$5. A\ Text\ Book\ of\ Practical\ Physics,\ Indu\ Prakash\ and\ Ramakrishna,\ 11th\ Edition,\ 2011,\ K$	itab
	Mahal, New Delhi.	

SET/	ME/BT/C108 Engineering Graphics and Workshop Practice	!
Course Objective	The Engineering Graphics course aims at the following educational objectives:	
	Comprehend general projection theory, with emphasis on orthographic projection to	
	represent three-dimensional objects in two-dimensional views (principal, auxiliary,	
	sections). Dimension and annotate two-dimensional engineering drawings. The application	
	of industry standards and best practices applied in engineering graphics. Emphasize	
	freehand sketching to aid in the visualization process and to efficiently communicate ideas	
	graphically.	
Course Outcome	T ^ T	
	2. Create geometric constructions; drawing parallel and perpendicular lines, and to	
	construct circles, arcs, tangencies, and irregular curves	
	3. Apply orthographic projection method to obtain: Multiview, auxiliary view and	
	section view of an object	
Module Name		No. of Hrs.
Introduction to	Drawing instruments and their use, Different types of lines, Lettering & dimensioning	08
Engineering	Familiarization with current Indian Standard Code of Practice for Engineering Drawing.	
Graphics &	Scales, Plain scales, Diagonal scales, Vernier scales. First angle and third angle	
Projection of	projections Projection of points in different coordinates, Projections of lines inclined to	
Points	one of the reference planes.	
Projections of	Projections of lines inclined to both the planes, True lengths of the lines and their angles	08
lines and planes	of inclination with the reference planes, Traces of lines. Projection of plane lamina of	
	geometric shapes inclined to one of the reference planes, inclined to both the	
	planes, Traces of planes. Projections on auxiliary planes.	
Projections of	Projections of polyhedral and solids of revolution, projection of solids with axis parallel	08
polyhedral and	to one of the planes and parallel or perpendicular to the other plane, Projections with the	
solids	axis inclined to one of the planes.	00
Orthographic	Concept of orthographic projection, Rules of Drawing orthographic projection, Conversion of pictorial views into orthographic projection, Drawing of orthographic	08
Projection	projection of Machine components.	
Carpentry,	Minimum two experiments from Carpentry, Fitting and Black smithy. And	08
Fitting and	Development of jobs carried out and soldering, Black Smithy, House Wiring, Foundry	08
Black smithy	(Molding only), Plumbing.	
Welding &	Practice of minimum two experiments of welding joints. Overview of Lathe, Shaper,	08
Machining	Milling and Drilling machine. Perform one job on each machine.	
8	Total No. of Hours	48
Textbooks	1. Bhatt N. D, Elementary Engineering Drawing, Charotar Publishing House, Ar	nand, 2002.
	Elements Of Workshop Technology Vol-1 by Hazra Chaudhary	
	2. Zioniono of monomop recimientogy voi i by indica chaudinary	
References	1. Narayana K L &Kannaiah P, Engineering Graphics, Tata McGraw Hill, New Delhi, 19	992.
	2. Luzadder W J, Fundamentals of Engineering Drawing, Prentice Hall of India, New De	lhi, 2001.
	3. Thomas E French & Charkes J V, Engineering Drawing & Graphing Technology, McG	
	Book Co, New York, 1993.	
	4. Venugopal K, Engineering Drawing & Graphics, New Age International Pvt. Ltd., New	v Delhi
	1994.	w Denii,
	5. Workshop Technology, Raghubanshi.	

SET/ME/SC/C1	10	
	Machining Practice Lab-I (Skill Enhancement C	Course)
Course Objective:	1. To make the student learn a Main parts machine and their functions	
	2. To learn various operations that can perform on the Machine.	
	3. To learn how to shape raw materials into useful products.	
Course Outcome:	After Completion of this course the student would be able to know functions of machine parts.	about
	Able to shape raw materials according to design of the components.	
Module Name	Content	No. of Hrs
Module I	Working and principle of Lathe machine, Important parts and Functions. Tools used in making job, Clamping of jobs using various work holding devices, Limitations of work holding devices. Functions of Lathe machine attachments and accessories, Cantering of jobs.	10
Module II	Practice on Lathe machine for making components as per given design related to operations:-Plain turning, Step turning, Taper turning, Knurling,	10
	Drilling, Bring, Reaming and Threading	
Module III	Drilling, Bring, Reaming and Threading Function and working of Shaper Machine. Work holding device working,	10
Module III		10

SE	T/SH/BT/C201 MATHEMATICS-II	[
Course Objective:	To introduce different types of integrations, transformations and digraduate students.	listributions for
Course Outcome:	Applying the Fourier series in signal processing and implementat transformations to solve complex engineering problems.	ion of various
Module Name	Content	No. of Hrs.
Multiple Integral	Evaluation of definite integral; double and triple integrals; change of order of integration. Change of variables, application to area, volume, centre of gravity, moment of inertia and product of inertia. Gamma and Beta functions, Dirichlet's integral and its application.	12
Fourier Series	Periodic functions, Fourier series of functions with period 2n, change of interval, half range sine and cosine series	6
Integral Transform	Laplace transforms, existence theorem, Laplace transform derivatives, inverse Laplace transform, application to solve linear differential equations, unit step function, Dirac delta function, Laplace transforms of periodic functions. Application of Laplace transforms. Definitions of Fourier transform and its simple applications	14
Probability and Statistics	Random variables. Uniform, normal, exponential, Poisson and binomial distributions. Mean, median, mode and standard deviation, Correlation and regression, Conditional probability and Bayes theorem	12
	Total No. of Hrs.	44
Textbooks	1. R. K. Jain and S. R. K. Iyengar "Advanced Engineering Mather Publications,	natics", Narosa
	2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers,	
	3. H K Das, "Advanced Engineering Mathematics", S Chand,	
	4. Erwin Kreyszig, "Advanced Engineering Mathematics".	

SET/N	ME/BT/C202 BASIC MECHANICAL ENGINEERING	
Course Objective	 To use mechanical principles to solve real-world engineering issues. To identify appropriate structural system for studying a given problem and iso its environment. Develop a simple mathematical model for an engineering problem and performanalysis. To carry out kinematics and Kinetics analysis for practices and system of part 	n a static
Course Outcome	 Students will be able to apply and demonstrate the concept of mechanics to prengineering problems. Students will be able to determine the properties of planes and solids. Students will be able to apply the basic concept of dynamics to practical problems. 	
Module Name	Content	No. of Hrs.
Fundamental concept of thermodynamics	Definition of thermodynamics, System, Surrounding and Universe, Phase, Concept of continuum, Macroscopic & microscopic point of view. Thermodynamic equilibrium, Property, State, Path, Process, Cyclic and non-cyclic processes, Reversible and irreversible processes, Quasi static process, Energy and its forms, Enthalpy, Zeroth law, first law, second law and third law of thermodynamics, Steady flow energy equation, Limitations of first law of thermodynamics, Essence of second law, Thermal reservoir, Heat engines. COP of heat pump and refrigerator, Carnot cycle, Carnot theorem, Clausius inequality, Concept of entropy.	8
steam	Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's law, Combined gas law, Gas constant, Relation between c _p and c _v , Various non-flow processes like constant volume process, constant pressure process, Isothermal process, Adiabatic process, Polytropic process. Steam formation, Enthalpy, Specific volume, Internal energy and dryness fraction of steams, steam calorimeters.	5
Thermodynamic Cycle	Rankine cycle, Actual vapour cycle processes, Comparison of Rankine and Carnot cycles, Air standard cycles - Otto, Diesel, dual and Brayton cycles, Vapour compression refrigeration cycles.	8
Introduction to Mechanics of Solid:	Normal and shear Stress, strain, Hookes' law, Poisson's ratio, elastic constants and their relationship, stress-strain diagram for ductile and brittle materials, factor of safety. Basic Numerical problems, temperature stresses, shear stress, complementary shear stress, shear strain.	8
Compound Stresses and Strains	State of stress at a point, oblique stress, simple tension, pure shear, general two dimensional stress system, principal planes, principal stresses and strains, maximum shear stress.	8
Bending Stress and Torsion	Pure bending, moment of inertia, section modulus, bending stresses, combined bending and direct stress, beam of uniform strength, middle third and middle quarter rules for rectangular and circular sections, Circular shafts, torsional shear stress, strain energy in torsion, shafts under varying torque, compound shafts, combined bending and twisting.	8
	Total No. of Hours	45
Textbooks	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". 	
References	 Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J. &Sons,Inc. NY. WarkWenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (Sl Edition) Central Publis Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranjan Avenue, G. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. 	hing House

8	. G. H. Ryder: "Strength of Materials".
9	. F. L. Singer: "Strength of Materials".
1	0. Timoshenko: "Strength of Materials".
	1. Beer, Johnson, Statics".

	SET/SH/BT/C203 CHEMISTRY		
Course Objective Course Outcome	 Apply the electrochemical principles in batteries, understand the fundamentals of corrosion. Analysis of water for its various parameters and its significance in industrial and domestic Applications. Analyze microscopic chemistry in terms of atomic, molecular orbitals and Intermolecular forces Analysis of major chemical reactions that are used in the synthesis of molecules. Understand the chemistry of various fuels and their combustion. Describe and understand the operation of electrochemical systems for the production of electric energy, i.e. batteries. Explain the mode by which potable water is produced through the processes of screening, micro Straining, aeration, coagulation and flocculation, sedimentation, flotation, filtration and disinfection. Recognize that molecular orbital theory is a method used by chemists to determine the energy of the electron in a molecule as well as its geometry. Demonstrate an ability to design, implement, and evaluate the results of experimentation using standard scientific methodologies such as hypothesis formulation and testing. 		
Module Name	5. Understand and analyze the combustion mechanisms of various fuels Content	No. of	
		Hrs.	
Advanced Theory	Valence bond and molecular orbital theory. Structure of NH3, H2O, SO3,	4	
of Chemical	PCl5, XeO2 molecules. Types of linkages, Hybridization, Hydrogen		
Bonding	bonding, Metallic bonding.		
Equilibrium on	Bronsted and Lewis Acids, pH, pka, pkb scale, buffer solution.	4	
Reactivity			
Polymers	Structures of the following polymers, viz, Natural and synthetic rubbers, Polyamide and Polyester fibres, polymethylmethacrylate, poly acrylonitrile and polystyrene. A brief account of conducting polymers (polypyrrole& polytiphene) & their applications.		
Complex	Introduction, Valence bond and crystal field theory.	4	
Compounds	, , , , , , , , , , , , , , , , , , , ,	-	
Chemical Kinetics	Order of reactions, Parallel and reversible reactions. Catalysis-		
& Catalysis	homogeneous and heterogeneous catalysis. Characteristics of catalytic reactions, catalytic promoters and poisons, auto catalysis and negative catalysis. Activation energy of catalysis, intermediate compound formation theory and adsorption theory.		
Atmospheric Chemistry& Air Pollution	Environment and ecology, environmental segments, structure and composition of atmosphere, radiation balance of earth and Green House Effect, formation and depletion of Ozone layer, chemical and photochemical reactions of various species in atmosphere, air pollution- sources, reactions and sinks for pollutants, acid rains and smog formation. Pollution control methods.		
Corrosion & Lubricants	Introduction, causes of corrosion, theories of corrosion-direct chemical attack, electrochemical theory of corrosion, factors influencing corrosion, corrosion inhibitors, passivity, types of corrosions, protection from corrosion and protective coatings. Theory, classification and mechanism of lubrication.	5	

Water and Waste	Introduction, hardness of water, characteristics imparted by impurities,	6		
Water Chemistry	analysis of contaminants, treatment of water by Zeolite, L-S process, boiler			
	feed water, waste water treatment.			
Fuels &	Classification of fuels, non-conventional energy, biogas, biomass and solar 5			
Combustion	energy, calorific value – gross and net, characteristics of good fuel,			
	determination of calorific value, solid fuels, analysis of coal, liquid fuels.			
Stereochemistry	Mechanism of chemical reaction, Beckman, Hoffman, Reimer Tiemann,	3		
of organic-	Cunnizzaro, Diels- Alder and Skraup synthesis.			
compounds				
	Total No. of Hours	42		
Textbooks	1. Jain, Jain, "Engineering Chemistry"			
	2. Sharma, Kumar, "Engineering Chemistry"			
References	1. R. T. Morrison and R N Boyd, "Organic Chemistry", 6th Edition, Prentice Hall, New Delhi,			
	2. J. D. Lee, "Concise Inorganic Chemistry", Chapman & Hall			
	3. W. L. Jolly, "Modern Inorganic Chemistry", McGraw-Hill			
	4. P.W. Atkins, "Physical Chemistry", 6th Edition, Oxford University Press			
	5. Barrow, "Physical Chemistry"			
	6. Manahan, "Environmental Chemistry"			
	7. D. L. Pavia, GM. Lampman, GS. Kriz and J.R Vyvyan, I, "Spectroscopy", Cengage Learning			
	India Pvt. Ltd, New Delhi, 2007			
	8. R.M. Silverstein, F.X. Webster and D.J. Kiemle, "Spectrometric Identification of Organic			
	Compounds", 7th edition, John-Wiley and Sons, New York, 2005			
	9. William Kemp, "Organic Spectroscopy", 3rd edition, Palgrave, New York, 2005			
	10. C.N. Banwell and E. M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw-Hill,			
	International, UK, 1995			
	11. F. Carey, "Organic Chemistry", 5th Edition, McGraw Hill Publishers, Boston, 2003			

SET/N	ME/BT/C204 ENGINEERING MECHANICS	
Course Objective	 To understand distributed force systems, centroid/ center of gravity and method of finding centroids of composite figures and bodies. To understand the moment of inertia and method of finding moment of inertia of areas and bodies. To understand types of frames and analyze for the forces in the members of the truss by method of joints and method of sections. To understand dynamics of a particle. To interpret the simple given dynamic problems and solve them for positions, velocities and accelerations, etc., To understand the kinetics of the rigid bodies and solve simple problems using work-energy 	
Course Outcome	 method. • To understand virtual work method and solve simple problems. Identify the significance of centroid/ center of gravity and find centroids of composite figures and bodies. Understand the moment of inertia and method of finding moment of inertia of areas and bodies. Identify the type of frame and analyze for the forces in the members of the truss (frame) by method of joints and method of sections. Understand dynamics of a particle. Interpret the simple given dynamic problems and solve them for positions, velocities and accelerations, etc., Understand the kinetics of the rigid bodies and solve simple problems using work-energy method. • Understand virtual work method and solve simple problems. 	
Module Name	Content	No. of Hrs.
Force System	Introduction: Force system, dimensions and units in mechanics, laws of mechanics, vector algebra, addition and subtraction of forces, cross and dot products of vectors, moment of a force about a point and axis, couple and couple moment, transfer of a force to a parallel position, resultant of a force system using vector method, Problems involving vector application Equilibrium: Static and dynamic equilibrium, static in determinacy, general equations of equilibrium, Varingnon's theorem,	8

	Lami's theorem, equilibrium of bodies under a force system, Problems.	
Trusses And	Truss and Frames: Truss, classification of truss, assumptions in truss analysis,	8
Frames	perfect truss, analysis of perfect plane truss using method of joints and method of	
	sections, Problems.	
Centre Of Gravity	Centroid, Centre of mass and Centre of gravity, Determination of centroid, centre of	10
And Moment Of	mass and centre of gravity by integration method of regular and composite figures	
Inertia	and solid objects, Problems, Moment of Inertia: Area moment of inertia, mass	
	moment of inertia, parallel axis and perpendicular axis theorems, radius of gyration,	
	polar moment of inertia, product of inertia, principle axis, problem based on	
	composite figures and solid objects.	
Friction and Virtual	Friction-characteristics of dry friction, problems involving friction of ladder, wedges	7
Work	and connected bodies. Definition of virtual work, principle of virtual work for a	
	system of connected bodies	
Kinematics	Kinematics: Concept of rigid body, velocity and acceleration, relative velocity,	12
And	translation and rotation of rigid bodies, equations of motion for translation and	
Dynamics	rotation, problems. Particle Dynamics: Energy methods and momentum methods,	
	Newton's laws, work energy equation for a system of particles, linear and angular	
	momentum equations, projectile motion, problem.	
	Total No. of Hours	45
Textbooks	Total No. of Hours 1. R S Khurmi, "Engineering Mechanics".	45
	Total No. of Hours 1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics".	-
Textbooks References	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J	-
	Total No. of Hours R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY.	-
	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. 3. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY.	-
	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. 3. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. 4. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY.	ohn Wiley
	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. 3. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. 4. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. 5. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central	ohn Wiley
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. 	ohn Wiley
	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. 3. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. 4. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. 5. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. 6. Yadav R.: Steam & Gas Turbines.	ohn Wiley Publishing
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (Sl Edition) Central House Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranjan. 	ohn Wiley Publishing
	1. R S Khurmi, "Engineering Mechanics". 2. P K Nag "Engineering Thermodynamics". 2. Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. 3. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. 4. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. 5. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. 6. Yadav R.: Steam & Gas Turbines. 7. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranja: Calcutta.	ohn Wiley Publishing
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranja: Calcutta. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. 	ohn Wiley Publishing
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranja: Calcutta. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. G. H. Ryder: "Strength of Materials". 	ohn Wiley Publishing
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (Sl Edition) Central House Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranja: Calcutta. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. G. H. Ryder: "Strength of Materials". F. L. Singer: "Strength of Materials". 	ohn Wiley Publishing
	 R S Khurmi, "Engineering Mechanics". P K Nag "Engineering Thermodynamics". Van Wylen G.J. &Sonnlog R.E.: Fundamentals of classical thermodynamics, J &Sons,Inc. NY. Wark Kenneth: Thermodynamics (2nd edition), Mc Graw Hill book Co. NY. Holman, J.P.: Thermodynamics, MC Graw Hill book Co. NY. Yadav R.: Thermodynamics and Heat Engines, Vol I & II (SI Edition) Central House Allahabad. Yadav R.: Steam & Gas Turbines. Kshitish Chandra Pal: Heat Power, Orient Longman Limited, 17, Chittranja: Calcutta. S. Rao, B.B. Parulekar, 'Energy Technology', Khanna Pub., New Delhi. G. H. Ryder: "Strength of Materials". 	ohn Wiley Publishing

	SET/CS/BT/C205 C PROGRAMMING	
Course Objective	The course is designed to provide complete knowledge of programming	in C language.
	Students will be able to develop logics which will help them to create	programs and
	applications in C. Also, by learning the basic programming concepts in C	, help them to
	learn any other programming language in future.	
Course Outcome	Develop programs in C programming language.	
	2. Analyze the problem and find appropriate solution	
	3. Evaluate the correctness of the developed solution.	
	4. Develop basic and advanced level applications using C programming	language.
Module Name	Content	No. of Hrs.
Introduction	Introduction, The C character set, Constants, Variables, Identifiers,	6
	Keywords, Data types, Declarations, The First C Program, Compilation and	
	Execution.	
Operators and	Arithmetic, Relational, Equality, Logical, Unary, Conditional, Bitwise,	6

Expressions	Assignment, Comma and Sizeof operator. Type Conversion and Typecasting.			
Control Statements	if, if-else, while, do-while, for loop, nested loops, switch, break, continue and goto statements.			
Functions & Pointers	Defining and accessing functions, Function prototype, Passing arguments, Recursion, Use of library functions. Introduction to pointers, Declarations, Passing to a function, Operations on pointers, Dynamic memory allocation, Array of pointers.			
Arrays	Single and Multi-dimensional arrays, Row major and Column major form of an array, Character strings and arrays.			
Storage classes	Automatic, Register, Static and External storage class.			
Structures and	Basics of structures, Structures and functions, Arrays of Structures, Pointers	4		
Unions	to structures, Self-referential structures, Unions.			
File Input/output	Opening a File, Reading from a file, closing the file, Writing to a file.	4		
Total No. of Hours	44			
Textbooks	1. E. Balagurusamy, "Programming in ANSI C"			
References	1. Byron S. Gottfried, "Programming With C"			
	2. YashwantKanitker, "LET US C"			
	3. B. W. Kernighan and D. M. Ritchie, "The C Programming Language"			
	4. B. W. Kernighan, "The Practice of Programming", Addison-Wesley, 1999.			
	5. C. L. Tondo and S. E. Gimpel, "The C Answer Book", (2/e), Prentice Hall, 198	8.		

AECC206	General English
(Life Skill and Person	onality Development)
As per University P	roposal and Approval

SET/SH/BT/C208	CHEMISTRY LAB	
Module Name	Content	No. of Hrs.
powder. 2. To determine the ferrous conton against standard K2Cr2O7 solutions. To determine the chloride conton 4. To determine the constituents at 5. To determine the temporary and 6. To find chemical oxygen demand 7. To determine iron concentrations. To determine the molecular week.	of available chlorine in the supplied sample of bleaching ent in the supplied sample of iron ore by titrimetric analysis on using K3Fe(CN)6 as external indicator. ent in supplied water sample using Mohr's method. and amount of alkalinity of the supplied water sample. d permanent hardness of water sample by complexometry. and of a waste water sample using Potassium Dichromate. In in the sample of water by Spectrophotometric method. Eight of a polystyrene sample by using viscometric method. by using digital pH meter and titration of such a solution pH proximate analysis method.	3 x 10

Total No. of Hours 30

SET/CS/BT/C	SET/CS/BT/C209 C PROGRAMMING LAB		В	
Course	1.	To make the student learn a programming language.		
Objective:	2.	To learn problem solving techniques.		
	3.	To teach the student to write programs in C and to s	solve the problems.	
Course	1.	After Completion of this course the student would be	be able to	
Outcome:	2.	Read, understand and trace the execution of programs written in C language.		
	3.	Write the C code for a given algorithm.		
	4.	Implement Programs with pointers and arrays, perform pointer arithmetic, and		
		use the pre-processor.		
	5. Write programs that perform operations using derived data types.		ed data types.	
Content			No. of Hrs.	
	This lab shall have minimum 25 programs in C. There shall be minimum two			
programs per module as taught in theory. Programming shall follow			2x16	
	logic/algorithm and flowchart wherever applicable. Exercises shall also			
enhance analytical and debugging abilities.				
	Total No. of Hours 32			

SET/ME/SC/C2	210		
	Machining Practice Lab-II (Skill Enhancement	Course)	
Course Objective:	1. To make the student learn a Main parts machine and their functions.		
	2. To learn various operations that can perform on the Machine.		
	3. To learn how to shape raw materials into useful products.		
Course Outcome:	1. After Completion of this course the student would be able to know	about	
	functions of machine parts.		
	2. Able to shape raw materials according to design of the components		
Module Name	Content	No. of Hrs	
Module I	Working and principle of Drilling machine, Important parts and Functions. Tools used in Drilling and Taping, Clamping of jobs using various work holding devices, Limitations of work holding devices. Functions of Drilling machine attachments and accessories. Jigs and Fixture used in drilling.	10	
Module II	Practice on Drilling machine for making components as per given design related to operations:-Drilling, Counter boring, Counter sinking Internal threading	10	
Module III	Function and working of Milling machine. Work holding device working, Tooling in milling, Practice on Milling machine for making components as per given design related to milling operations and Gear making.	10	
<u> </u>	Total Hours	30	