Curriculum and Syllabus update

B. TECH.

Electrical and Instrumentation Engineering

Introduction of MOOC's/SWAYAM courses for upcoming semester (Applicable for 2018-19 batch and onwards)

Department of Instrumentation Engineering School of Engineering and Technology, H. N. B. Garhwal University, Srinagar Garhwal, Uttarakhand- 246174

mum'

mum'

<u>Curriculum</u>

Definitions/ Descriptions

1. Credit Equivalent

	No. of Contact Hours per Week	Equivalent Credits
Lecture+ Tutorial	4/3	3
Practical	2	1

*Mandatory Induction Program

3 weeks duration						
	Dhusical activity					
•	Physical activity					
•	Creative Arts					
•	Universal Human Values					
•	Literary					
•	Proficiency Modules					
•	Lectures by Eminent People					
•	Visits to local Areas					
•	Familiarization to Dept./Branch & Innovations					

*Induction program for students to be offered right at the start of the first year. Appendix –I sheet has attached for details.

2. Code for Courses:

Code for a course consists of two alphabets followed by three digits and an optional alphabet.

- First three alphabets represent the school name (SET: School of Engineering and Technology).
- Next two alphabets in the code represent the subject area of the course. E.g. (SH: Applied Science and Humanities, EC: Electronics and Communication Engineering, EI: Electrical and Instrumentation Engineering, EE: Electrical Engineering, ME: Mechanical Engineering, CS: Computer Science and Engineering, IT: Information Technology, AECC: Ability Enhancement Compulsory Courses, HS: Humanities and Social Sciences including Management courses, MC: Mandatory Course).
- Then there will be subject code with 4 letters out of which first will tell the nature of subject (C: Core/E: Elective/S: Skill Enhancement/M: Mandatory Course/H: Humanities/A: Applied Science) and next three letters will tell the number according to the semester(for example 801 will tell its 8th semester subject). First digit represents the semester. Next two digits represent the sequence number of course in the list of courses of a semester. Last word in few courses is MOOC, which represents that course may be opted from SWAYAM Portal.

Elective Course:

Elective courses are provided in V, VI, VII and VIII semesters to provide student with flexibility to choose courses of their interest from a list of offered electives. These Electives are the courses offered by the same department or other departments for the students.

MOOC Courses:

"MOOCs" means Massive Open Online Courses (MOOCs) are such online courses which are developed and made available on the SWAYAM platform of Government of India. MOOCs guidelines on online learning issued by the MHRD vide orders dated 11th March 2016 and subsequent addendums issued by the MHRD.

Any candidate can be permitted to opt for only up to 20% of the total courses being offered in a particular program in a semester through the online learning courses provided through SWAYAM platform

mum'

Semester-wise list of subjects

<u>Semester I</u>

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1	SET/SH/BT/C101	Mathematics I	3	1	-	4	3
2	SET/SH/BT/C102	Physics	3	1	-	4	3
	SET/SH/BT/C203	Chemistry					
	SET/EE/BT/C103	Fundamentals of Electrical	-	-	-		
3	MOOC	Engineering*				4	3
	SET/EE/BT/C103	Basic Electrical Engineering	3	1	-		
	SET/ME/BT/C202	Basic Mechanical Engineering					
4	SET/EC/BT/C104	Basic Electronics	3	1	-	4	3
	SET/ME/BT/C204	Engineering Mechanics					
5	SET/IT/BT/C105	Fundamentals of Information	3	1	-	4	3
		Technology					
	SET/CS/BT/C205	Computer Programming					
6	AECC106	*Environmental Science	2	-	-	2	2
7	SET/SH/BT/C106	Physics Lab	-	-	2	2	1
	SET/SH/BT/C207	Chemistry Lab					
8	SET/EE/BT/C107	Basic Electrical Engineering Lab	-	-	2	2	1
	SET/ME/BT/C206	Basic Mechanical Engineering Lab					
9	SET/IT/BT/C108	Information Technology Lab	-	-	2	2	1
	SET/CS/BT/C208	Computer Programming Lab					
10	SET/ME/BT/S109	***Engineering Graphics	-	-	4	4	2
	Total				10	32	22

*MOOC Course, ** Ability Enhancement Compulsory course. ***Skill Enhancement Course.

Semester IV

S.	Code	Course Title	L	Т	Р	Contact	Credits
No.						Hrs./Week	
1	SET/EI/BT/C401	Sensors and Transducers	3	1	-	4	3
2	SET/EC/BT/C402	Analog Integrated Circuits	3	1	-	4	3
3	SET/EI/BT/C403	Microprocessors and Microcontrollers	3	1	-	4	3
4	SET/EI/BT/C404	Analytical Instruments	3	1	-	4	3
5	SET/EC/BT/C405	Electromagnetic Field Theory	3	1	-	4	3
6	SET/EI/BT/C406	Circuit Theory	3	1	-	4	3
	SET/EI/BT/C406M	Network Analysis*	-	-	-		
	OOC						
7	SET/EC/BT/C407	Analog Integrated Circuits Lab	-	-	2	2	1
8	SET/EI/BT/C408	Microprocessors and Microcontrollers	-	-	2	2	1
		Lab					
9	SET/EI/BT/C409	Sensors and Transducers Lab	-	-	2	2	1
10	SET/EI/BT/C410	Analytical Instruments Lab	-	-	2	2	1
11	SET/MC/BT/M411	Essence of Indian Traditional	-	-	-	Self study	Qualifying
		Knowledge (*MC)					
		Total	18	6	8	32	22

*MOOC Course, ** Mandatory Course.

Semester V

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
	SET/EI/BT/C501	Power Systems	3	1	-	4	

mum'

1	SET/EI/BT/C501	Power systems analysis*	-	-	-	-	3
	MOOC						
	SET/EI/BT/C502	Control Systems	3	1	-	4	
2	SET/EI/BT/C502	Control Systems*	-	-	-	-	3
	MOOC						
3	SET/EI/BT/C503	Industrial Instrumentation	3	1	-	4	3
	SET/EI/BT/C504	Power Electronics	3	1	-	4	
4	SET/EI/BT/C504	Power Electronics*	-	-	-	-	3
	MOOC						
5		PE-01	3	1	-	4	3
6	SET/EI/BT/C506	Power Systems Lab	-	-	2	2	1
7	SET/EI/BT/C507	Control Systems Lab	-	-	2	2	1
8	SET/EI/BT/C508	Industrial Instrumentation Lab	-	-	2	2	1
9	SET/EI/BT/C509	Power Electronics Lab	-	-	2	2	1
10	SET/HS/BT/H510	Foundations of Yoga (**HSMC)	3	1	-	4	3
	Total				8	32	22

*MOOC Course, ** Humanities and Social Sciences including Management courses.

Duckagional	S. No.	Code	Course Title
Floative 01	1	SET/EI/BT/E505 (i)	Electrical Drives
(DE 01)	2	SET/EI/BT/E505 (ii)	Line Commutated and Active PWM Rectifiers
(112-01)	3	SET/EI/BT/E505 (iii)	Electrical Machine Design

Semester VIII

S. No.	Code	Course Title	L	Т	Р	Contact Hrs./Week	Credits
1		PE-04	3	1	-	4	3
		PE-04MOOC	-	-	-	4	
2		OE-04	3	1	-	4	3
3		OE-05	3	1	-	4	3
4	SET/EI/BT/C804	Major Project	-	-	16	16	8
	Total				16	28	17

	S. No.	Code	Course Title
Ducforsional	1	SET/EI/BT/E801 (i)	Renewable Energy Engineering
Floative 04		SET/EI/BT/E801 (i)MOOC	Non-conventional Energy Resources*
(DE 04)	2	SET/EI/BT/E801 (ii)	Electrical Distribution System
(1 L-04)	3	SET/EI/BT/E801 (iii)	Control Systems Design
	4	SET/EI/BT/E801 (iv)	Switchgear and Protection

*MOOC Course,

	S. No.	Code	Course Title				
	1	SET/EI/BT/E802 (i)	Data Communication and Networking				
Open		SET/EI/BT/E803 (i)					
Elective 04	2	SET/EI/BT/E802 (ii)	Virtual Instrumentation				
and 05		SET/EI/BT/E803 (ii)					
(OE-04, OE-	3	SET/EI/BT/E802 (iii)	Smart Grid Technology				
05)		SET/EI/BT/E803 (iii)					
	4	SET/EI/BT/E802 (iv)	Mobile Communication and Networks				
		SET/EI/BT/E803 (iv)					

mum'

<u>Note</u>

- (1) Topic for the Seminar in 6th semesters shall be chosen by students in consultation with faculty. Topic shall not be mentioned in the syllabus anywhere, however, it should be related to Electrical and Instrumentation Engineering.
- (2) Students shall choose 2 professional & 2 open elective subjects in 7th Semester and 1 professional & 2 open elective subjects in 8th semester, each from the given Table. An elective subject shall be offered only when at least 30% of the intake opt for that subject.
- (3) Desirous students opting for an online course would be required to register for the MOOCs for that course/paper through SWAYAM-NPTEL Local Chapter and it will be mandatory for her/him to share necessary information with the college /institute.
- (4) Major Project work shall be carried out during the 7th and 8th semester. Students can undertake Major Project individually or in group of not more than Four students, under the guidance of a faculty or a group of faculty. Students have to present Synopsis of Major Project during the 7th semester. Feasibility of the Project shall be assessed by the project evaluation committee of the department before the end of 7th semester. However, Major Project would be evaluated in the end of 8th semester.

Detailed Syllabi

<u>SEMESTER I</u>

S.	Code	Course Title	L	Т	Р	T.A	C.T	ТОТ	ESE	SUB.	Credits
No.										TOTAL	
1	SET/SH/BT/C101	Mathematics I	3	1	-	10	20	30	70	100	3
2	SET/SH/BT/C102	Physics	3	1	-	10	20	30	70	100	3
	SET/SH/BT/C203	Chemistry									
	SET/EE/BT/C10	Fundamentals of Electrical	-	-	-	-	-	-	-	100	
3	3MOOC	Engineering*									
	SET/EE/BT/C103	Basic Electrical Engineering	3	1	-	10	20	30	70		3
	SET/ME/BT/C202	Basic Mechanical Engineering									
4	SET/EC/BT/C104	Basic Electronics	3	1	-	10	20	30	70	100	3
	SET/ME/BT/C204	Engineering Mechanics									
5	SET/IT/BT/C105	Fundamentals of Information	3	1	-	10	20	30	70	100	3
		Technology									
	SET/CS/BT/C205	Computer Programming									
6	AECC106	**Environmental Science	2	-	-	10	20	30	70	100	2
7	SET/SH/BT/C106	Physics Lab	-	-	2	30	-	30	70	100	1
	SET/SH/BT/C207	Chemistry Lab									
8	SET/EE/BT/C107	Basic Electrical Engineering Lab	-	-	2	30	-	30	70	100	1
	SET/ME/BT/C206	Basic Mechanical Engineering Lab									
9	SET/IT/BT/C108	Information Technology Lab	-	-	2	30	-	30	70	100	1
	SET/CS/BT/C208	Computer Programming Lab									
10	SET/ME/BT/S109	***Engineering Graphics			4	30	-	30	70	100	2
										Total	22

*MOOC Course, ** Ability Enhancement Compulsory course.

***Skill Enhancement Course.

L - Lecture hours, T - Tutorial hours, P - Practical hours, T.A - Teacher's Assessment, C.T - Class Test, TOT - Total, ESE - End Semester Examination.

MOOC's/SWAYAM Courses introduced in First Semester:

SET/EE/BT/C103MOOC. FUNDAMENTAL OF ELECTRICAL ENGINEERING									
Module Name	Content	No. of Hrs.							
Week 1-3	Basic Concepts and Basic Laws, Methods of Analysis, DC Network Theorems	10							

mulm'

Week 4-6	Capacitors and Inductors and First Order Circuits, Sinusoidal and Phasors, Sinusoidal Steady-State	10				
	Alialysis					
Week 7-9	AC Circuit Analysis and Network Theorems, Series and Parallel Resonance and Magnetically					
	Coupled Circuits. Three Phase Circuits and Power Measurements					
Week 10-12	2 Single Phase Transformers, Three Phase Induction Machines, DC Machines. 10					
	Total No. of Hours	40				
Textbooks	1. I.J. Nagrath, "Basic Electrical Engineering," Tata Mc. Graw Hill.					
References	1. A. E. Fitgerald, D.E., Higginbotham and A Grabel, "Basic Electrical Engineering", Mc Graw Hill.					
	2. Rizzoni, Principles and Applications of Electrical Engineering, TMH.					
	3. V. Del Toro. "Principles of electrical Engineering, "Prentice hall.					
	4. W.H. Hayt & J.E. Kemmerly," Engineering circuit Analysis, "Mc Graw Hill.					
	5. H. Cotton, "Advanced Electrical Technology" Wheeler Publishing.					

S.	Code	Course Title	L	Т	Р	T.A	C.T	тот	ESE	SUB.	Credits
No.										TOTAL	
1	SET/EI/BT/C401	Sensors and Transducers	3	1	-	10	20	30	70	100	3
2	SET/EC/BT/C402	Analog Integrated Circuits	3	1	1	10	20	30	70	100	3
3	SET/EI/BT/C403	Microprocessors and	3	1	-	10	20	30	70	100	3
		Microcontrollers									
4	SET/EI/BT/C404	Analytical Instruments	3	1	1	10	20	30	70	100	3
5	SET/EC/BT/C405	Electromagnetic Field Theory	3	1	1	10	20	30	70	100	3
6	SET/EI/BT/C406	Circuit Theory	3	1	1	10	20	30	70	100	3
	SET/EI/BT/C406M	Network Analysis*	-	-	-	-	-	-	-		
	OOC										
7	SET/EC/BT/C407	Analog Integrated Circuits Lab	-	I	2	30	-	30	70	100	1
8	SET/EI/BT/C408	Microprocessors and	-	-	2	30	-	30	70	100	1
		Microcontrollers Lab									
9	SET/EI/BT/C409	Sensors and Transducers Lab	-	-	2	30	-	30	70	100	1
10	SET/EI/BT/C410	Analytical Instruments Lab	-	-	2	30	-	30	70	100	1
11	SET/MC/BT/M411	Essence of Indian Traditional	-	-	-	-	-	-	-	100	-
		Knowledge (*MC)									
										Total	22

SEMESTER IV

*Mandatory Course.

L – Lecture hours, T – Tutorial hours, P – Practical hours, T.A – Teacher's Assessment, C.T - Class Test, TOT – Total, ESE - End Semester Examination.

MOOC's/SWAYAM Courses introduced in Fourth Semester:

SET/EI/BT/C406MOOC. NETWORK ANALYSIS							
Module Name	Content	No. of Hrs.					
Week 1-3	Introduction to Network, circuit elements & sources. KVL & KCL, Solution of linear	10					
	differential equation with different excitation, Deeper look into energy storing						
	elements, inductor and capacitor.						
Week 4-6	Ideal and practical voltage & current sources. Mesh and nodal analysis of networks.	10					
	ransforming voltage to current source and vicr-versa. Thevenin / Norton's equivalent						
	circuit.						
Week 7-9	Tellegen Theorem and its implication. Theory of reciprocity. Network function. Two-	10					
	port network: Z-parameters, Y-parameters, h-parameters & ABCD parameters.						
	Definition of graph & tree of a network. Cut-set matrix.						
Week 10-12	ek 10-12 [A],[B] & [Q] matrices : Relationship among them, Tutorial -1, Tutorial-2						
	Total No. of Hours	40					
Textbooks	1. D. Roy Choudhary, Network and Systems, Wiley Eastern,.						
References	1. Van Valkenburg M E, Network Analysis 3rd Edition, Prentice Hall.						
	2. Van Valkenberg M.E., Introduction to Modern Network Synthesis, John Wiley and Sons.						
	3. Franklin. F. Kuo, Network Analysis and Synthesis, John Wiley & sons.						
	4. Hayt, Kimmerly, Engineering Circuit Analysis, McGraw Hill.						
	5. Desoer C.A. & Kuh E.S., Basic Circuit Theory, McGraw-Hill.						
	6. Ryder J.D., Networks, Lines and Fields, Prentice Hall.						
	7. B. P. Lathi, Linear Systema and Signals, Oxford University Press.						

mum'

8. DeCarlo, R.A., & Lin, "Linear Circuit Analysis", 2 nd Edition, OUP Indian Edition 2003.
9. Mahmood Nahvi, Joseph, A. Edminister, "Theory and Problems of Electric Circuits - Schaum's outline
series", McGraw Hill.
10. Donald E. Scott, "An Introduction to Circuit analysis: A System Approach" McGraw Hill Book Company.
11. A.Chakrabarti,"Circuit Theory" Dhanpat Rai & Co.

SEMESTER V

S.	Code	Course Title	L	Т	Р	T.A	C.T	ТОТ	ESE	SUB.	Credits
No.										TOTAL	
	SET/EI/BT/C501	Power Systems	3	1	I	10	20	30	70	100	
1	SET/EI/BT/C501	Power Systems Analysis*	-	-	-	-	-	-	-	100	3
	MOOC										
2	SET/EI/BT/C502	Control Systems	3	1	-	10	20	30	70	100	
	SET/EI/BT/C502	Control Systems*	-	-	-	-	-	-	-	100	3
	MOOC										
3	SET/EI/BT/C503	Industrial Instrumentation	3	1	I	10	20	30	70	100	3
4	SET/EI/BT/C504	Power Electronics	3	1	-	10	20	30	70	100	
	SET/EI/BT/C504	Power Electronics*	-	-	-	-	-	-	-	100	3
	MOOC										
5		PE-01	3	1	I	10	20	30	70	100	3
6	SET/EI/BT/C506	Power Systems Lab	-	-	2	30	-	30	70	100	1
7	SET/EI/BT/C507	Control Systems Lab	-	-	2	30	-	30	70	100	1
8	SET/EI/BT/C508	Industrial Instrumentation Lab	-	-	2	30	-	30	70	100	1
9	SET/EI/BT/C509	Power Electronics Lab	-	-	2	30	-	30	70	100	1
10	SET/HS/BT/H510	Foundations of Yoga (**HSMC)	3	1	-	10	20	30	70	100	3
										Total	22

*MOOC Course, ** Humanities and Social Sciences including Management courses.

L – Lecture hours, T – Tutorial hours, P – Practical hours, T.A – Teacher's Assessment, C.T - Class Test, TOT – Total, ESE - End Semester Examination.

	S.	Code	Course Title
Professional	No.		
Elective 01	1	SET/EI/BT/E505 (i)	Electrical Drives
(PE-01)	2	SET/EI/BT/E505 (ii)	Line Commutated and Active PWM Rectifiers
	3	SET/EI/BT/E505 (iii)	Electrical Machine Design

MOOC's/SWAYAM Courses introduced in Fifth Semester:

SET/EI/BT/C501MOOC. POWER SYSTEM ANALYSIS								
Module Name	Module Name Content							
Week 1-3	Structure Of Power System and Few Other Aspects, Resistance, Inductance, and	10						
	Capacitance of Transmission Lines, Power System Components and Per Unit							
	System							
Week 4-6	Characteristics and Performance of Transmission Lines, Load Flow Analysis 10							
Week 7-9	Optimal System Operation, Symmetrical Fault. 10							
Week 10-12	Symmetrical Components, Unbalanced Fault Analysis, Power System Stability. 10							
	Total No. of Hours	40						
Textbooks	1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill Education, 1994	4.						
References	2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.							
	3. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.							
	4. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 2003.							
	5. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems	s", Wiley, 2012.						

SET/EI/BT/C502MOOC. CONTROL SYSTEMS							
Module Name	Content	No. of Hrs.					
Week 1-3	Introduction to Control, Classi_cation of Dynamic Systems, Closed Loop Control System with	10					
	Feedback, Mathematical Preliminaries - Complex Variables, Laplace Transform. Standard						
	Inputs, Free and Forced Response, Transfer Function, Poles and Zeros. esponse to various						
	Inputs, E_ect of Poles, Notion of Bounded Input Bounded Output (BIBO) stability.						
Week 4-6	Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Speci_cation, First	10					

mum'

	Order Systems. Second Order Systems, Unit Step Response of Underdamped Second Order						
	Systems, Concepts of Rise						
	Time, Peak Time, Maximum Peak Overshoot and Settling Time. Controllers – Proportional						
	(P), Integral (I) and Derivative (D) Blocks, Examples of PID controller design.						
Week 7-9	Routh's Stability Criterion, Use in Control Design, Incorporation of Performance	10					
	Specifications in Controller Design, Analysis of Steady State Errors. Root Locus and its						
	Application in Control Design. Frequency Response, Bode Plots, Nyquist Plots.						
Week 10-12	Nyquist Stability Criterion, Relative Stability - Gain and Phase Margins. Control System	10					
	Design via Frequency Response – Lead, Lag and Lag-Lead Compensation. Case Studies.						
	Total No. of Hours	40					
Textbooks	1. I. G. Nagrath, M. Gopal, "Control Systems". Wiley, New York, 1983.						
References	1. K. Ogata, "Modern Control Engg". PHI publications.						
	2. B. C. Kuo, "Automatic Control Systems". Prentice. Hall.						

	SET/EI/BT/C504MOOC. POWER ELECTRONICS					
Module Name	Content	No. of Hrs.				
Week 1-3	Introduction to Power Electronics, Power devices : Diodes, SCRs, GTO, BJT, MOSFET,	10				
	IGBT- Characteristics, working, selection and protection, AC-DC converter: half wave & full					
	wave; uncontrolled, semi-controlled & fully controlled; single-phase and three-phase					
Week 4-6	Assignment No. 2 and 3 on single-phase and three-phase converters and simulations, AC-AC	10				
	converters: AC voltage controllers and cycloconverters, Non-isolated DC-DC converters:					
	Buck, Boost, Buck-boost & Cuk					
Week 7-9	Isolated DC-DC converters, DC-AC Inverters: Single-phase and three-phase, modulation	10				
	techniques, Current Source inverter					
Week 10-12	Applications of Power Electronics in Generation, Transmission, Distribution & utilization	10				
	sectors, Assignment No. 6 on Isolated DC-DC converters: Problems and simulation,					
	Assignment No. 7&8 on DC-AC inverters (single-phase and three-phase): problems and					
	simulation					
	Total No. of Hours	40				
Textbooks	1. P.S.Bhimra, Power Electronics. Khanna Publication, Delhi.					
	2. M.H. Rashid, Power Electronics. P.H.I Private Ltd. New Delhi,					
References	1. N. Mohan, T.M. Undeland & W.P. Robbins, Power Electronics. John Wiley & Sons, Inc, 200	3.				
	2. M.D. singh & K.B. Khanchandani, power electronics. Tata McGraw-Hill Education.					

SEMESTER VIII

S.	Code	Course Title	L	Т	Р	T.A	C.T	ТОТ	ESE	SUB.	Credits
No.										TOTAL	
1		PE-04	3	1	1	10	20	30	70	100	3
2		OE-04	3	1	-	10	20	30	70	100	3
3		OE-05	3	1	-	10	20	30	70	100	3
4	SET/EI/BT/C804	Major Project	-	-	16	-	-	-	-	100	8
										Total	17

 $L-Lecture \ hours, \ T-Tutorial \ hours, \ P-Practical \ hours, \ T.A-Teacher's \ Assessment, \ C.T-Class \ Test, \ TOT-Total, \ ESE-End \ Semester \ Examination.$

	S. No.	Code	Course Title
Professional Elective 04 (PE-04)	1	SET/EI/BT/E801 (i)	Renewable Energy Engineering
		SET/EI/BT/E801 (i)MOOC	Non-Conventional Energy Resources*
	2	SET/EI/BT/E801 (ii)	Electrical Distribution System
	3	SET/EI/BT/E801 (iii)	Control Systems Design
	4	SET/EI/BT/E801 (iv)	Switchgear and Protection

*MOOC Course,

Open Elective	S. No.	Code	Course Title
04 and 05	1	SET/EI/BT/E802 (i)	Data Communication and Networking
(OE-04, OE-05)		SET/EI/BT/E803 (i)	

mum'

2	SET/EI/BT/E802 (ii)	Virtual Instrumentation
	SET/EI/BT/E803 (ii)	
3	SET/EI/BT/E802 (iii)	Smart Grid Technology
	SET/EI/BT/E803 (iii)	
4	SET/EI/BT/E802 (iv)	Mobile Communication and Networks
	SET/EI/BT/E803 (iv)	

MOOC's/SWAYAM Courses introduced in Eighth Semester:

SET/EI/BT/E801 (i)MOOC. NON-CONVENTIONAL ENERGY RESOURCES					
Module Name	Content	No. of Hrs.			
Week 1-3	Scale of quantities, Impact of current energy usage, Conventional sources of energy	10			
	Overview of non-conventional energy resources, Consumption by sector				
	Solar energy incident on earth, solar spectrum				
Week 4-6	Overview of solar energy technologies, Solar Thermal devices	10			
	Solar Photovoltaic devices, Performance and durability of solar devices				
	Wind energy, technology and geographical aspects				
Week 7-9	Geothermal and Biomass	10			
	Battery basics, types				
	Testing, performance of batteries				
Week 10-12	Fuel cell types, Fuel processing, concept to product.	10			
	Characterization and durability of fuel cells				
	Flywheels and super capacitors				
	Total No. of Hours	40			
Textbooks	1. D. P. Kothari, "Renewable Energy Resources", PHI Publications.				
References	1. G. D. Rai, "Non- conventional sources of energy", Khanna Publishers, Delhi.				

mum'