HNB Garhwal University Srinagar-246174 (Garhwal) Uttarakhand **Sample Question Paper Integral Calculus** B.A./B.Sc. VIthSemester 2020

Q. 1. If n be a positive and odd integer then the value of $\int_0^{\Pi/2} \cos^n x \, dx$ is

(a) $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{n-5}{n-4} \cdot \frac{2}{3}\pi$	(b) $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{n-5}{n-4} \cdot \frac{2}{3} \frac{2}{\pi}$
(c) $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{n-5}{n-4} \cdot \frac{2}{3}$	(d) None of these.

Q. 2.
$$\int_{0}^{2a} \phi(x) dx = 2 \int_{0}^{a} \phi(x) dx$$
 if
(a) $\phi(2a + x) = \phi(x)$ (b) $\phi(2a - x) = -\phi(x)$
(c) $\phi(2a - x) = \phi(x)$ (d) None of these.

Q. 3. Which of the following relation is true

(a) $\int \int_{A} f(x, y) dx dy = \int \int_{A} f(r \cos \theta, r \sin \theta) d\theta dr$ (b) $\int \int_{A} f(x, y) dx dy = \int \int_{A}^{\infty} f(r \sin \theta, r \cos \theta) d\theta dr$ (c) $\int \int_{A} f(x, y) dx dy = \int \int_{A} f(r \sin \theta, r \cos \theta) r d\theta dr$ (d) None of these.

Q. 4. Quadrature is the process of determining the

(a) Length of arc of plane curves (b) Area under plane curves

- (c) Intrinsic equation from the polar equation of curve
- (d) None of these.

,

Q. 5. The volume of the solid generated by revolution about the y-axis of the area bounded by the curve x = f(y), the y-axis and the abscissae y = a to y = b is

(a)
$$\int_{a}^{b} \pi y^{2} dx$$
 (b) $\int_{a}^{b} \frac{1}{2} \pi x^{2} dy$
(c) $\int_{a}^{b} \pi x^{2} dy$ (d) None of these.

HNB Garhwal University Srinagar-246174 (Garhwal) Uttarakhand Sample Question Paper Complex Analysis

B.A./B.Sc.VIthSemester

2020

1. The polar form of the complex number z = -1 - i is (a). $z = \sqrt{2}e^{-i3\pi/4}$ (b). $z = \sqrt{2}e^{i3\pi/4}$ (c). $z = \sqrt{2}e^{-i\pi/4}$ (d). $z = \sqrt{2}e^{i\pi/4}$ 2. If f(z) = u + v, be an analytic function and |f(z)| is constant then which of the following is not true: (a). f(z) is constant (b). f(z) need not be constant (c). *u* is constant (d). v is constant 3. If f(z) = u + v, be an analytic function and $u = x^2 - y^2$ then v is: (a). v = xy + constant(b). v = 2xy + constant(c). v = -xy + constant(d). v = constant4. The value of $\int_C \bar{z} dz$ if $C: z = e^{it}$, $0 \le t \le \pi$ is: (a). *iπ* (b). $-i\pi$ (c). π (d). 0 5. The possible Taylor or Laurent series of the function $f(z) = \frac{2z}{(z-1)(z-2)}$ in the region $0 \leq |z| \leq 1$ is: (a). $f(z) = 2 \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^n} \right) z^n$ (b). $f(z) = 2\sum_{n=0}^{\infty} \left(1 + \frac{1}{2^n}\right) z^n$

(c). $f(z) = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^n}\right) z^n$ (d). $f(z) = \sum_{n=0}^{\infty} \left(1 + \frac{1}{2^n}\right) z^n$

HNB Garhwal University Srinagar-246174 (Garhwal) Uttarakhand Sample Question Paper Vector Calculus B.A./B.Sc. VIthSemester 2020

Q. 1. If A = 2i + 3j + 4k, B = i + j - k, C = i - j + k then $A \times (B \times C)$ is

(a) 2i - 4j + 4k (b) 2i + 4j + 4k(c) 2i - 4j - 4k (c) 2i + 4j - 4k

Q. 2. The necessary and sufficient condition for the vector $\vec{a}(t)$ have a constant direction is

(a) $\vec{a} . \frac{da}{dt} = 1$	(b) $\vec{a} \cdot \frac{da}{dt} = 0$
(c) $\vec{a} \times \frac{d\vec{a}}{dt} = 0$	(d) $\vec{a} \times \frac{d\vec{a}}{dt} = 1$

Q. 3. If $\vec{r} = xi + yj + zk$, \vec{a} is any vector, then $div(\vec{r} \times \vec{a})$ is (a) 1 (b) 2

(a) 1	(b) 2
(c) 3	(c) 0

Q. 4. If $\vec{r} = xi + yj + zk$, \hat{r} is unit vector of \vec{r} . Then $div(\hat{r})$ is (a) $\frac{1}{|\vec{r}|}$ (b) $\frac{2}{|\vec{r}|}$ (c) $\frac{3}{|\vec{r}|}$ (d) None of the above

Q. 5. The value of integral $\int_c F dr$ where $F = (x^2 + y^2)i - 2xyj$, where c is the rectangle in the xy plane bounded by y = 0, x = a, y = b, x = 0, is

(a) $-2ab^2$	(b) −2 <i>a</i> ² <i>b</i>
(c) 2 <i>a</i> ² <i>b</i>	(d) $a^2 b$